Algebra


  1. If   x =
    3 + 1
      and y =
    3 − 1
      , then value of x2 + y2 is :
    3 − 13 + 1









  1. View Hint View Answer Discuss in Forum

    x =
    3 + 1
    3 − 1

    =
    3 + 1
    ×
    (√3 + 1)
    3 − 1(√3 + 1)

    =
    (√3 + 1)2
    =
    3 + 1 + 2√3
    3 − 12

    =
    4 + 2√3
    = 2 + √3
    2

    Similarly,
    y =
    3 − 1
    = 2 − √3
    3 + 1

    ∴  x2 + y2 = (2 + √3)2 + (2 − √3)2
    = 4 + 3 + 4√3 + 4 + 3 – 4√3
    = 14

    Correct Option: A

    x =
    3 + 1
    3 − 1

    =
    3 + 1
    ×
    (√3 + 1)
    3 − 1(√3 + 1)

    =
    (√3 + 1)2
    =
    3 + 1 + 2√3
    3 − 12

    =
    4 + 2√3
    = 2 + √3
    2

    Similarly,
    y =
    3 − 1
    = 2 − √3
    3 + 1

    ∴  x2 + y2 = (2 + √3)2 + (2 − √3)2
    = 4 + 3 + 4√3 + 4 + 3 – 4√3
    = 14


  1. If 44x + 1 =
    1
    ,  then the value of x is
    64









  1. View Hint View Answer Discuss in Forum

    44x + 1 =
    1
    =
    1
    6443

    ⇒ 44x + 1 = 4−3 ⇒ 4x + 1 = – 3
    ⇒  4x = – 4 ⇒ x = – 1

    Correct Option: B

    44x + 1 =
    1
    =
    1
    6443

    ⇒ 44x + 1 = 4−3 ⇒ 4x + 1 = – 3
    ⇒  4x = – 4 ⇒ x = – 1



  1. If   x =
    3
    , then  
    1 + x
    +
    1 − x
      is equal to
    21 + √1 + x1 − √1 − x









  1. View Hint View Answer Discuss in Forum

    Given   x =
    3
    2

    Given expression =
    1 + x
    +
    1 − x
    1 + √1 + x1 − √1 − x

    =
    1 + x
    ×
    1 − √1 − x
    +
    1 − x
    ×
    1 + √1 + x
    1 + √1 + x1 − √1 + x1 − √1 − x1 + √1 − x

    =
    1 + x − 1 − x
    +
    1 − x + 1 − x
    1 − 1 − x1 − 1 + x

    =
    1 − x + 1 − x
    1 + x − 1 − x
    x x

    =
    2 + √1 − x − √1 + x
    x


    [∵  √4 − 2√3 = √3 + 1 − 2√3
    = √(√3 − 1)2 = √3 − 1]
    and
    [√4 + 2√3 = √3 + 1 + 2√3
    = √(√3 + 1)2 = √3 + 1]
    =
    4 + √3 − 1 − √3 − 1
    =
    2
    33

    Correct Option: B

    Given   x =
    3
    2

    Given expression =
    1 + x
    +
    1 − x
    1 + √1 + x1 − √1 − x

    =
    1 + x
    ×
    1 − √1 − x
    +
    1 − x
    ×
    1 + √1 + x
    1 + √1 + x1 − √1 + x1 − √1 − x1 + √1 − x

    =
    1 + x − 1 − x
    +
    1 − x + 1 − x
    1 − 1 − x1 − 1 + x

    =
    1 − x + 1 − x
    1 + x − 1 − x
    x x

    =
    2 + √1 − x − √1 + x
    x


    [∵  √4 − 2√3 = √3 + 1 − 2√3
    = √(√3 − 1)2 = √3 − 1]
    and
    [√4 + 2√3 = √3 + 1 + 2√3
    = √(√3 + 1)2 = √3 + 1]
    =
    4 + √3 − 1 − √3 − 1
    =
    2
    33


  1. If a3b = abc = 180, a, b, c are positive integers, then the value of c is









  1. View Hint View Answer Discuss in Forum

    180 = 2 × 2 × 3 × 3 × 5
    a3b = abc
    ⇒  a2 = c
    ∴  a3b = abc =180 = 12 × 180 × 1
    = 13 × 180
    ⇒  c = 1

    Correct Option: B

    180 = 2 × 2 × 3 × 3 × 5
    a3b = abc
    ⇒  a2 = c
    ∴  a3b = abc =180 = 12 × 180 × 1
    = 13 × 180
    ⇒  c = 1



  1. If (x – 3)2 + (y – 5)2 + (z – 4)2 = 0, then the value of
    x2
    +
    y2
    +
    z2
      is :
    92516









  1. View Hint View Answer Discuss in Forum

    (x – 3)2 + (y – 5)2 + (z – 4)2 = 0
    ⇒  x – 3 = 0         ⇒  x = 3
    y – 5 = 0             ⇒  y = 5
    z – 4 = 0             ⇒  z = 4

    ∴ 
    x2
    +
    y2
    +
    z2
    92516

    =
    9
    +
    25
    +
    16
    92516

    = 1 + 1 +1 = 3

    Correct Option: C

    (x – 3)2 + (y – 5)2 + (z – 4)2 = 0
    ⇒  x – 3 = 0         ⇒  x = 3
    y – 5 = 0             ⇒  y = 5
    z – 4 = 0             ⇒  z = 4

    ∴ 
    x2
    +
    y2
    +
    z2
    92516

    =
    9
    +
    25
    +
    16
    92516

    = 1 + 1 +1 = 3