Algebra
-
If average of two numbers x and 1 (where x ≠ 0) is A, what will be the average of x3 1 ? x x3
-
View Hint View Answer Discuss in Forum
According to the question ,
A = 1 + 1 x 2 ⇒ x + 1 = 2A x
On cubing both sides,⇒ x + 1 3 = (2A)3 = 8A3 x ⇒ x3 + 1 + 3 x + 1 = 8A3 x3 x ⇒ x3 + 1 + 3 × 2A = 8A3 x3 ⇒ x3 + 1 = 8A3 - 4A x3 ∴ Required average = x3 + 1 x3 2 Required average = 8A3 - 4A = 4A3 - 2A 2
Correct Option: B
According to the question ,
A = 1 + 1 x 2 ⇒ x + 1 = 2A x
On cubing both sides,⇒ x + 1 3 = (2A)3 = 8A3 x ⇒ x3 + 1 + 3 x + 1 = 8A3 x3 x ⇒ x3 + 1 + 3 × 2A = 8A3 x3 ⇒ x3 + 1 = 8A3 - 4A x3 ∴ Required average = x3 + 1 x3 2 Required average = 8A3 - 4A = 4A3 - 2A 2
- If p + m = 6 and p3 + m3 = 72, then the value of pm is
-
View Hint View Answer Discuss in Forum
Using Rule 8,
p + m = 6
On cubing both sides,
(p + m)3 = p3 + m3 + 3pm(p + m)
⇒ (6)3 = 72 + 3pm × 6
⇒ 216 – 72 = 18pm
⇒ 18pm = 144
⇒ pm = 144 ÷ 18 = 8Correct Option: D
Using Rule 8,
p + m = 6
On cubing both sides,
(p + m)3 = p3 + m3 + 3pm(p + m)
⇒ (6)3 = 72 + 3pm × 6
⇒ 216 – 72 = 18pm
⇒ 18pm = 144
⇒ pm = 144 ÷ 18 = 8
- If x = 5, y = 6 and z = –11, then the value of x3 + y3 + z3 is
-
View Hint View Answer Discuss in Forum
Using Rule 21,
x + y + z = 5 + 6 – 11 = 0
x3 + y3 + z3 = = 3xyz
= 3 × 5 × 6 × (–11) = –990Correct Option: D
Using Rule 21,
x + y + z = 5 + 6 – 11 = 0
x3 + y3 + z3 = = 3xyz
= 3 × 5 × 6 × (–11) = –990
-
If un = 1 - 1 , then the value of u1 + u2 + u3 + u4 + u5 is n n + 1
-
View Hint View Answer Discuss in Forum
un = 1 - 1 n n + 1 ∴ u1 = 1 - 1 1 1 + 1 ⇒ u1 = 1 - 1 ; 2 Similarlly ,u2 = 1 - 1 ; 2 3 u3 = 1 - 1 ; 3 4 u4 = 1 - 1 ; 4 5 u5 = 1 - 1 5 6 ∴ u1 + u2 + u3 + u4 + u5 = 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 2 2 3 3 4 4 5 5 6 u1 + u2 + u3 + u4 + u5 = 1 - 1 = 6 - 1 6 6 Hence , u1 + u2 + u3 + u4 + u5 = 5 6
Correct Option: D
un = 1 - 1 n n + 1 ∴ u1 = 1 - 1 1 1 + 1 ⇒ u1 = 1 - 1 ; 2 Similarlly ,u2 = 1 - 1 ; 2 3 u3 = 1 - 1 ; 3 4 u4 = 1 - 1 ; 4 5 u5 = 1 - 1 5 6 ∴ u1 + u2 + u3 + u4 + u5 = 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 2 2 3 3 4 4 5 5 6 u1 + u2 + u3 + u4 + u5 = 1 - 1 = 6 - 1 6 6 Hence , u1 + u2 + u3 + u4 + u5 = 5 6
- If m + n = – 2, then the value of m3 + n3 - 6mn is
-
View Hint View Answer Discuss in Forum
Using Rule 8,
m + n = –2
On cubing both sides,
(m + n)3 = (-2)3 = -8
⇒ m3 + n3 + 3mn(m + n) = -8
⇒ m3 + n3 - 6mn = -8Correct Option: C
Using Rule 8,
m + n = –2
On cubing both sides,
(m + n)3 = (-2)3 = -8
⇒ m3 + n3 + 3mn(m + n) = -8
⇒ m3 + n3 - 6mn = -8