Algebra


  1. If average of two numbers x and
    1
    (where x ≠ 0) is A, what will be the average of x3
    1
    ?
    xx3










  1. View Hint View Answer Discuss in Forum

    According to the question ,

    A = 1 +
    1
    x
    2

    ⇒ x +
    1
    = 2A
    x

    On cubing both sides,
    x +
    1
    3 = (2A)3 = 8A3
    x

    ⇒ x3 +
    1
    + 3x +
    1
    = 8A3
    x3x

    ⇒ x3 +
    1
    + 3 × 2A = 8A3
    x3

    ⇒ x3 +
    1
    = 8A3 - 4A
    x3

    ∴ Required average = x3 +
    1
    x3
    2

    Required average =
    8A3 - 4A
    = 4A3 - 2A
    2

    Correct Option: B

    According to the question ,

    A = 1 +
    1
    x
    2

    ⇒ x +
    1
    = 2A
    x

    On cubing both sides,
    x +
    1
    3 = (2A)3 = 8A3
    x

    ⇒ x3 +
    1
    + 3x +
    1
    = 8A3
    x3x

    ⇒ x3 +
    1
    + 3 × 2A = 8A3
    x3

    ⇒ x3 +
    1
    = 8A3 - 4A
    x3

    ∴ Required average = x3 +
    1
    x3
    2

    Required average =
    8A3 - 4A
    = 4A3 - 2A
    2


  1. If p + m = 6 and p3 + m3 = 72, then the value of pm is









  1. View Hint View Answer Discuss in Forum

    Using Rule 8,
    p + m = 6
    On cubing both sides,
    (p + m)3 = p3 + m3 + 3pm(p + m)
    ⇒ (6)3 = 72 + 3pm × 6
    ⇒ 216 – 72 = 18pm
    ⇒ 18pm = 144
    ⇒ pm = 144 ÷ 18 = 8

    Correct Option: D

    Using Rule 8,
    p + m = 6
    On cubing both sides,
    (p + m)3 = p3 + m3 + 3pm(p + m)
    ⇒ (6)3 = 72 + 3pm × 6
    ⇒ 216 – 72 = 18pm
    ⇒ 18pm = 144
    ⇒ pm = 144 ÷ 18 = 8



  1. If x = 5, y = 6 and z = –11, then the value of x3 + y3 + z3 is









  1. View Hint View Answer Discuss in Forum

    Using Rule 21,
    x + y + z = 5 + 6 – 11 = 0
    x3 + y3 + z3 = = 3xyz
    = 3 × 5 × 6 × (–11) = –990

    Correct Option: D

    Using Rule 21,
    x + y + z = 5 + 6 – 11 = 0
    x3 + y3 + z3 = = 3xyz
    = 3 × 5 × 6 × (–11) = –990


  1. If un =
    1
    -
    1
    , then the value of u1 + u2 + u3 + u4 + u5 is
    nn + 1










  1. View Hint View Answer Discuss in Forum

    un =
    1
    -
    1
    nn + 1

    ∴ u1 =
    1
    -
    1
    11 + 1

    ⇒ u1 = 1 -
    1
    ;
    2

    Similarlly ,u2 =
    1
    -
    1
    ;
    23

    u3 =
    1
    -
    1
    ;
    34

    u4 =
    1
    -
    1
    ;
    45

    u5 =
    1
    -
    1
    56

    ∴ u1 + u2 + u3 + u4 + u5 = 1 -
    1
    +
    1
    -
    1
    +
    1
    -
    1
    +
    1
    -
    1
    +
    1
    -
    1
    223344556

    u1 + u2 + u3 + u4 + u5 = 1 -
    1
    =
    6 - 1
    66

    Hence , u1 + u2 + u3 + u4 + u5 =
    5
    6

    Correct Option: D

    un =
    1
    -
    1
    nn + 1

    ∴ u1 =
    1
    -
    1
    11 + 1

    ⇒ u1 = 1 -
    1
    ;
    2

    Similarlly ,u2 =
    1
    -
    1
    ;
    23

    u3 =
    1
    -
    1
    ;
    34

    u4 =
    1
    -
    1
    ;
    45

    u5 =
    1
    -
    1
    56

    ∴ u1 + u2 + u3 + u4 + u5 = 1 -
    1
    +
    1
    -
    1
    +
    1
    -
    1
    +
    1
    -
    1
    +
    1
    -
    1
    223344556

    u1 + u2 + u3 + u4 + u5 = 1 -
    1
    =
    6 - 1
    66

    Hence , u1 + u2 + u3 + u4 + u5 =
    5
    6



  1. If m + n = – 2, then the value of m3 + n3 - 6mn is









  1. View Hint View Answer Discuss in Forum

    Using Rule 8,
    m + n = –2
    On cubing both sides,
    (m + n)3 = (-2)3 = -8
    ⇒ m3 + n3 + 3mn(m + n) = -8
    ⇒ m3 + n3 - 6mn = -8

    Correct Option: C

    Using Rule 8,
    m + n = –2
    On cubing both sides,
    (m + n)3 = (-2)3 = -8
    ⇒ m3 + n3 + 3mn(m + n) = -8
    ⇒ m3 + n3 - 6mn = -8