Algebra


  1. If  
    1
    =
    1
    +
    1
    +
    1
    ;
    a + b ≠ 0, then x = ?
    a + b + xabx









  1. View Hint View Answer Discuss in Forum

    1
    1
    =
    1
    +
    1
    a + b + xxab

    ⇒ 
    x − (a + b + x)
    =
    a + b
    x(a + b + x)ab

    ⇒ 
    − (a + b)
    =
    a + b
    x(a + b + x)ab

    ⇒  – ab (a + b) = (a + b) x (a + b + x)
    ⇒  (a + b) {x (a + b + x) + ab} = 0
    ⇒  x (a + b + x) + ab = 0
              [∵  a + b ≠ 0]
    ⇒  x2 + ax + bx + ab = 0
    ⇒  x (x + a) + b (x + a) = 0
    ⇒  (x + a) (x + b) = 0
    ⇒  x = –a or, –b

    Correct Option: C

    1
    1
    =
    1
    +
    1
    a + b + xxab

    ⇒ 
    x − (a + b + x)
    =
    a + b
    x(a + b + x)ab

    ⇒ 
    − (a + b)
    =
    a + b
    x(a + b + x)ab

    ⇒  – ab (a + b) = (a + b) x (a + b + x)
    ⇒  (a + b) {x (a + b + x) + ab} = 0
    ⇒  x (a + b + x) + ab = 0
              [∵  a + b ≠ 0]
    ⇒  x2 + ax + bx + ab = 0
    ⇒  x (x + a) + b (x + a) = 0
    ⇒  (x + a) (x + b) = 0
    ⇒  x = –a or, –b


  1. If  
    5 + 2√3
    = a + b√3, the values of a and b respectively are :
    7 + 4√3









  1. View Hint View Answer Discuss in Forum

    Expression =
    5 + 2√3
    7 + 4√3

    =
    5 + 2√3
    ×
    7 − 4√3
    7 + 4√37 − 4√3

    Rationlising the denominator
    =
    5 × 7 − 5 × 4√3 + 2√3 × 7 − 2√3 × 4√3
    72 − (4√3)2

    =
    35 − 20√3 + 14√3 − 24
    49 − 48

    = 11 – 6√3
    ∴ 
    5 + 2√3
    = a + b√3
    7 + 4√3

    ⇒  a + b√3 = 11 – 6√3
    ⇒  a = 11, b = –6

    Correct Option: B

    Expression =
    5 + 2√3
    7 + 4√3

    =
    5 + 2√3
    ×
    7 − 4√3
    7 + 4√37 − 4√3

    Rationlising the denominator
    =
    5 × 7 − 5 × 4√3 + 2√3 × 7 − 2√3 × 4√3
    72 − (4√3)2

    =
    35 − 20√3 + 14√3 − 24
    49 − 48

    = 11 – 6√3
    ∴ 
    5 + 2√3
    = a + b√3
    7 + 4√3

    ⇒  a + b√3 = 11 – 6√3
    ⇒  a = 11, b = –6



  1. If   x =
    1
    , what will be the value of x3 − – 2x2 – 7x + 5 ?
    2 − √3









  1. View Hint View Answer Discuss in Forum

    x =
    1
    2 − √3

    =
    1
    ×
    2 + √3
    2 − √32 + √3

    =
    2 + √3
    ×
    2 + √3
    22 − (√3)24 − 3

    = 2 + √3
    ⇒  x – 2 = √3
    On squaring both sides,
    ⇒  (x – 2)2 = (√3)2
    ⇒  x2 – 4x + 4 = 3
    ⇒  x2 – 4x + 1 = 0

    ∴  x3 – 2x2 – 7x + 5 = (x2 – 4x +1) (x + 2) + 3 = 0 + 3 = 3

    Correct Option: C

    x =
    1
    2 − √3

    =
    1
    ×
    2 + √3
    2 − √32 + √3

    =
    2 + √3
    ×
    2 + √3
    22 − (√3)24 − 3

    = 2 + √3
    ⇒  x – 2 = √3
    On squaring both sides,
    ⇒  (x – 2)2 = (√3)2
    ⇒  x2 – 4x + 4 = 3
    ⇒  x2 – 4x + 1 = 0

    ∴  x3 – 2x2 – 7x + 5 = (x2 – 4x +1) (x + 2) + 3 = 0 + 3 = 3


  1. If   x4 +
    1
    = 47, what will be the value of x3 +
    1
    ?
    x4x3









  1. View Hint View Answer Discuss in Forum

    x4 +
    1
    = 47
    x4

    ⇒ (x2)2
    1
    2 = 47
    x2

    ⇒ x2 +
    1
    2 – 2 = 47
    x2

    [∵  a2 + b2 = (a + b)2 – 2ab]
    ⇒ x2 +
    1
    2 = 47 + 2 = 49
    x2

    ⇒  x2 +
    1
    = √49 = 7
    x2

    Again,  x +
    1
    2 – 2 = 7
    x

    ⇒ x +
    1
    2 = 7 + 2 = 9
    x

    ⇒  x +
    1
    = √9 = 3
    x

    On cubing both sides,
    x +
    1
    3 = 33
    x

    ⇒  x3 +
    1
    + 3 x +
    1
    = 27
    x3x

    ⇒  x3 +
    1
    + 3 × 3 = 27
    x3

    ⇒  x3 +
    1
    = 27 – 9 = 18
    x3

    Correct Option: A

    x4 +
    1
    = 47
    x4

    ⇒ (x2)2
    1
    2 = 47
    x2

    ⇒ x2 +
    1
    2 – 2 = 47
    x2

    [∵  a2 + b2 = (a + b)2 – 2ab]
    ⇒ x2 +
    1
    2 = 47 + 2 = 49
    x2

    ⇒  x2 +
    1
    = √49 = 7
    x2

    Again,  x +
    1
    2 – 2 = 7
    x

    ⇒ x +
    1
    2 = 7 + 2 = 9
    x

    ⇒  x +
    1
    = √9 = 3
    x

    On cubing both sides,
    x +
    1
    3 = 33
    x

    ⇒  x3 +
    1
    + 3 x +
    1
    = 27
    x3x

    ⇒  x3 +
    1
    + 3 × 3 = 27
    x3

    ⇒  x3 +
    1
    = 27 – 9 = 18
    x3



  1. If   x
    x − bc
    +
    x − ca
    +
    x − ab
    = a + b + c what is the value of x ?
    b + cc + aa + b









  1. View Hint View Answer Discuss in Forum

    x − bc
    +
    x − ca
    +
    x − ab
    = a + b + c
    b + cc + aa + b

    ⇒ 
    x − bc
    − a +
    x − ca
    − b +
    x − ab
    − c = 0
    b + cc + aa + b

    ⇒ 
    x − bc − ab − ac
    +
    x − ca − bc − ab
    +
    x − ab − ac − bc
    = 0
    b + cc + aa + b

    ⇒  x – bc – ab – ac = 0
    ⇒  x = ab + bc + ac

    Correct Option: D

    x − bc
    +
    x − ca
    +
    x − ab
    = a + b + c
    b + cc + aa + b

    ⇒ 
    x − bc
    − a +
    x − ca
    − b +
    x − ab
    − c = 0
    b + cc + aa + b

    ⇒ 
    x − bc − ab − ac
    +
    x − ca − bc − ab
    +
    x − ab − ac − bc
    = 0
    b + cc + aa + b

    ⇒  x – bc – ab – ac = 0
    ⇒  x = ab + bc + ac