Algebra


  1. If  
    a
    +
    b
    +
    c
    = 1   then
    b + cc + aa + b
    a2
    +
    b2
    +
    c2
    = ?
    b + cc + aa + b









  1. View Hint View Answer Discuss in Forum

    a
    = 1 −
    b
    c
    b + cc + aa + b

    ∴ 
    a2
    = a −
    ab
    ac
    b + cc + aa + b

    b
    = 1 −
    a
    c
    a + cb + ca + b

    ∴ 
    b2
    = b −
    ab
    bc
    a + cb + ca + b

    a
    = 1 −
    a
    b
    a + bb + cc + a

    ∴ 
    c2
    = c −
    ac
    bc
    a + cb + cc + a

    ∴ 
    a2
    +
    b2
    +
    c2
    b + ca + ca + b

    = a + b + c –
    ab
    +
    bc
    ac
    +
    bc
    ab
    +
    ac
    c + ac + aa + ba + bb + cb + c

    = a + b + c – b
    a + c
    – c
    a + b
    – a
    b + c
    c + aa + bb + c

    = a + b + c – b – c – a = 0

    Correct Option: C

    a
    = 1 −
    b
    c
    b + cc + aa + b

    ∴ 
    a2
    = a −
    ab
    ac
    b + cc + aa + b

    b
    = 1 −
    a
    c
    a + cb + ca + b

    ∴ 
    b2
    = b −
    ab
    bc
    a + cb + ca + b

    a
    = 1 −
    a
    b
    a + bb + cc + a

    ∴ 
    c2
    = c −
    ac
    bc
    a + cb + cc + a

    ∴ 
    a2
    +
    b2
    +
    c2
    b + ca + ca + b

    = a + b + c –
    ab
    +
    bc
    ac
    +
    bc
    ab
    +
    ac
    c + ac + aa + ba + bb + cb + c

    = a + b + c – b
    a + c
    – c
    a + b
    – a
    b + c
    c + aa + bb + c

    = a + b + c – b – c – a = 0


  1. If a + b + c + d = 4 then the value of
    1
    +
    1
    +
    1
    +
    1
    is
    (1 − a)(1 − b)(1 − c)(1 − b)(1 − c)(1 − d)(1 − c)(1 − d)(1 − a)(1 − d)(1 − a)(1 − b)









  1. View Hint View Answer Discuss in Forum

    a + b + c + d = 4
    ⇒  4 – a – b – c – d = 0    ...(i)
    Expression

    =
    1
    +
    1
    +
    1
    +
    1
    (1 − a)(1 − b)(1 − c)(1 − b)(1 − c)(1 − d)(1 − c)(1 − d)(1 − a)(1 − d)(1 − a)(1 − b)

    =
    (1 − d) + (1 − a) + (1 − b) + (1 − c)
    (1 − a)(1 − b)(1 − c)(1 − d)

    =
    4 − a − b − c − d
    = 0
    (1 − a)(1 − b)(1 − c)(1 − d)

    Correct Option: A

    a + b + c + d = 4
    ⇒  4 – a – b – c – d = 0    ...(i)
    Expression

    =
    1
    +
    1
    +
    1
    +
    1
    (1 − a)(1 − b)(1 − c)(1 − b)(1 − c)(1 − d)(1 − c)(1 − d)(1 − a)(1 − d)(1 − a)(1 − b)

    =
    (1 − d) + (1 − a) + (1 − b) + (1 − c)
    (1 − a)(1 − b)(1 − c)(1 − d)

    =
    4 − a − b − c − d
    = 0
    (1 − a)(1 − b)(1 − c)(1 − d)



  1. If   a +
    1
    = 1 and b +
    1
    = 1, then the value of c +
    1
    is
    bca









  1. View Hint View Answer Discuss in Forum

    a +
    1
    = 1
    b

    ⇒  a = 1 –
    1
    =
    b − 1
    bb

    ⇒ 
    1
    =
    b
    ab − 1

    Again,  b +
    1
    = 1
    c

    ⇒ 
    1
    = 1 – b
    c

    ⇒  c =
    1
    1 – b

    ∴  c +
    1
    =
    1
    +
    b
    a1 – bb − 1

    =
    1
    b
    =
    1 – b
    = 1
    1 – b1 – b1 – b

    Correct Option: C

    a +
    1
    = 1
    b

    ⇒  a = 1 –
    1
    =
    b − 1
    bb

    ⇒ 
    1
    =
    b
    ab − 1

    Again,  b +
    1
    = 1
    c

    ⇒ 
    1
    = 1 – b
    c

    ⇒  c =
    1
    1 – b

    ∴  c +
    1
    =
    1
    +
    b
    a1 – bb − 1

    =
    1
    b
    =
    1 – b
    = 1
    1 – b1 – b1 – b


  1. The simplified form of (x + (3)2 + (x – 1)2 is









  1. View Hint View Answer Discuss in Forum

    x + (3)2 + (x – 1)2
    = x2 + 2 × x × 3 + 32 + x2 – 2 × x × 1 + 12
    = x2 + 6x + 9 + x2 – 2x + 1
    = 2x2 + 4x + 10 = 2(x2 + 2x + 5)

    Correct Option: B

    x + (3)2 + (x – 1)2
    = x2 + 2 × x × 3 + 32 + x2 – 2 × x × 1 + 12
    = x2 + 6x + 9 + x2 – 2x + 1
    = 2x2 + 4x + 10 = 2(x2 + 2x + 5)



  1. If a – b = 11 and ab = 24, then the value of (a2 + b2) is









  1. View Hint View Answer Discuss in Forum

    a – b = 11 and ab = 24
    ∴  (a – b)2 = 112
    ⇒  a2 + b2 – 2ab = 121
    ⇒  a2 + b2 – 2 × 24 = 121
    ⇒  a2 + b2 = 121 + 48 = 169

    Correct Option: A

    a – b = 11 and ab = 24
    ∴  (a – b)2 = 112
    ⇒  a2 + b2 – 2ab = 121
    ⇒  a2 + b2 – 2 × 24 = 121
    ⇒  a2 + b2 = 121 + 48 = 169