Algebra
-
If a + b + c = 1 then b + c c + a a + b a2 + b2 + c2 = ? b + c c + a a + b
-
View Hint View Answer Discuss in Forum
a = 1 − b − c b + c c + a a + b ∴ a2 = a − ab − ac b + c c + a a + b b = 1 − a − c a + c b + c a + b ∴ b2 = b − ab − bc a + c b + c a + b a = 1 − a − b a + b b + c c + a ∴ c2 = c − ac − bc a + c b + c c + a ∴ a2 + b2 + c2 b + c a + c a + b = a + b + c – ab + bc – ac + bc – ab + ac c + a c + a a + b a + b b + c b + c = a + b + c – b a + c – c a + b – a b + c c + a a + b b + c
= a + b + c – b – c – a = 0Correct Option: C
a = 1 − b − c b + c c + a a + b ∴ a2 = a − ab − ac b + c c + a a + b b = 1 − a − c a + c b + c a + b ∴ b2 = b − ab − bc a + c b + c a + b a = 1 − a − b a + b b + c c + a ∴ c2 = c − ac − bc a + c b + c c + a ∴ a2 + b2 + c2 b + c a + c a + b = a + b + c – ab + bc – ac + bc – ab + ac c + a c + a a + b a + b b + c b + c = a + b + c – b a + c – c a + b – a b + c c + a a + b b + c
= a + b + c – b – c – a = 0
- If a + b + c + d = 4 then the value of
1 + 1 + 1 + 1 is (1 − a)(1 − b)(1 − c) (1 − b)(1 − c)(1 − d) (1 − c)(1 − d)(1 − a) (1 − d)(1 − a)(1 − b)
-
View Hint View Answer Discuss in Forum
a + b + c + d = 4
⇒ 4 – a – b – c – d = 0 ...(i)
Expression= 1 + 1 + 1 + 1 (1 − a)(1 − b)(1 − c) (1 − b)(1 − c)(1 − d) (1 − c)(1 − d)(1 − a) (1 − d)(1 − a)(1 − b) = (1 − d) + (1 − a) + (1 − b) + (1 − c) (1 − a)(1 − b)(1 − c)(1 − d) = 4 − a − b − c − d = 0 (1 − a)(1 − b)(1 − c)(1 − d) Correct Option: A
a + b + c + d = 4
⇒ 4 – a – b – c – d = 0 ...(i)
Expression= 1 + 1 + 1 + 1 (1 − a)(1 − b)(1 − c) (1 − b)(1 − c)(1 − d) (1 − c)(1 − d)(1 − a) (1 − d)(1 − a)(1 − b) = (1 − d) + (1 − a) + (1 − b) + (1 − c) (1 − a)(1 − b)(1 − c)(1 − d) = 4 − a − b − c − d = 0 (1 − a)(1 − b)(1 − c)(1 − d)
-
If a + 1 = 1 and b + 1 = 1, then the value of c + 1 is b c a
-
View Hint View Answer Discuss in Forum
a + 1 = 1 b ⇒ a = 1 – 1 = b − 1 b b ⇒ 1 = b a b − 1 Again, b + 1 = 1 c ⇒ 1 = 1 – b c ⇒ c = 1 1 – b ∴ c + 1 = 1 + b a 1 – b b − 1 = 1 − b = 1 – b = 1 1 – b 1 – b 1 – b Correct Option: C
a + 1 = 1 b ⇒ a = 1 – 1 = b − 1 b b ⇒ 1 = b a b − 1 Again, b + 1 = 1 c ⇒ 1 = 1 – b c ⇒ c = 1 1 – b ∴ c + 1 = 1 + b a 1 – b b − 1 = 1 − b = 1 – b = 1 1 – b 1 – b 1 – b
- The simplified form of (x + (3)2 + (x – 1)2 is
-
View Hint View Answer Discuss in Forum
x + (3)2 + (x – 1)2
= x2 + 2 × x × 3 + 32 + x2 – 2 × x × 1 + 12
= x2 + 6x + 9 + x2 – 2x + 1
= 2x2 + 4x + 10 = 2(x2 + 2x + 5)Correct Option: B
x + (3)2 + (x – 1)2
= x2 + 2 × x × 3 + 32 + x2 – 2 × x × 1 + 12
= x2 + 6x + 9 + x2 – 2x + 1
= 2x2 + 4x + 10 = 2(x2 + 2x + 5)
- If a – b = 11 and ab = 24, then the value of (a2 + b2) is
-
View Hint View Answer Discuss in Forum
a – b = 11 and ab = 24
∴ (a – b)2 = 112
⇒ a2 + b2 – 2ab = 121
⇒ a2 + b2 – 2 × 24 = 121
⇒ a2 + b2 = 121 + 48 = 169Correct Option: A
a – b = 11 and ab = 24
∴ (a – b)2 = 112
⇒ a2 + b2 – 2ab = 121
⇒ a2 + b2 – 2 × 24 = 121
⇒ a2 + b2 = 121 + 48 = 169