Algebra


  1. The value of
    1
    +
    1
    +
    1
    is
    ( a² + ax + x² )( a² - ax + x² )( a4 + a2x2 + x4 )










  1. View Hint View Answer Discuss in Forum

    Expression =
    1
    +
    1
    +
    2ax
    a² + ax + x²a² - ax + x²a4 + a2x2 + x4

    Expression =
    ( a² - ax + x² - a² - ax - x² )
    +
    2ax
    ( a² + ax + x² )( a² - ax + x² )( a4 + a2x2 + x4 )

    Expression =
    -2ax
    +
    2ax
    = 0
    ( a4 + a2x2 + x4 )( a4 + a2x2 + x4 )

    Correct Option: D

    Expression =
    1
    +
    1
    +
    2ax
    a² + ax + x²a² - ax + x²a4 + a2x2 + x4

    Expression =
    ( a² - ax + x² - a² - ax - x² )
    +
    2ax
    ( a² + ax + x² )( a² - ax + x² )( a4 + a2x2 + x4 )

    Expression =
    -2ax
    +
    2ax
    = 0
    ( a4 + a2x2 + x4 )( a4 + a2x2 + x4 )


  1. If x = 11, then the value of x5 – 12x4 + 12x3 – 12x2 + 12x – 1 is









  1. View Hint View Answer Discuss in Forum

    x = 11 (Given)
    ∴ x5 – 12x4 + 12x3 – 12x2 + 12x – 1
    = x5 – (11 + 1)x4 + (11 + 1)x3 – (11 + 1)x2 + (11 + 1)x – 1
    = x5 – 11x4 - x4 + 11x3 + x3 – 11x2 - x2 + 11x + x – 1
    When x = 11,
    = 115 – 115 - 114 + 114 + 113 – 113 - 112 + 112 + 11 – 1
    = 0 - 0 + 0 - 0 + 10 = 10

    Correct Option: B

    x = 11 (Given)
    ∴ x5 – 12x4 + 12x3 – 12x2 + 12x – 1
    = x5 – (11 + 1)x4 + (11 + 1)x3 – (11 + 1)x2 + (11 + 1)x – 1
    = x5 – 11x4 - x4 + 11x3 + x3 – 11x2 - x2 + 11x + x – 1
    When x = 11,
    = 115 – 115 - 114 + 114 + 113 – 113 - 112 + 112 + 11 – 1
    = 0 - 0 + 0 - 0 + 10 = 10



  1. If x = k3 – 3k2 and y = 1 – 3k then for what value of k, will be x = y ?









  1. View Hint View Answer Discuss in Forum

    Using Rule 9
    x = k3 – 3k2
    y = 1 – 3k
    When x = y, then
    k3 – 3k2 = 1 – 3k
    ⇒ k3 – 3k2 + 3k – 1 = 0
    ⇒ (k – 1)3 = 0 ⇒ k – 1 = 0
    ⇒ k = 1

    Correct Option: B

    Using Rule 9
    x = k3 – 3k2
    y = 1 – 3k
    When x = y, then
    k3 – 3k2 = 1 – 3k
    ⇒ k3 – 3k2 + 3k – 1 = 0
    ⇒ (k – 1)3 = 0 ⇒ k – 1 = 0
    ⇒ k = 1


  1. If
    1
    = a ³√4 + b ³√2 + c and a, b, c are rational numbers, then a + b + c is equal to
    [ ³√4 + ³√2 + 1 ]










  1. View Hint View Answer Discuss in Forum

    1
    = a ³√4 + b ³√2 + c
    [ ³√4 + ³√2 + 1 ]

    1
    = a.22 / 3 + b.21 / 3 + c
    ( 22 / 3 + 21 / 3 + 1 )

    ( 21 / 3 - 1 )
    = a.22 / 3 + b.21 / 3 + c
    ( 21 / 3 - 1 )( 22 / 3 + 21 / 3 + 1 )

    ( 21 / 3 - 1 )
    = a.22 / 3 + b.21 / 3 + c
    ( 2 - 1 )

    [ ∵ ( a + b )(a2 + b2 - ab) = a3 - b3 ]
    ⇒ a = 0, b = 1, c = – 1
    ∴ a + b + c = 0 + 1 – 1 = 0

    Correct Option: A

    1
    = a ³√4 + b ³√2 + c
    [ ³√4 + ³√2 + 1 ]

    1
    = a.22 / 3 + b.21 / 3 + c
    ( 22 / 3 + 21 / 3 + 1 )

    ( 21 / 3 - 1 )
    = a.22 / 3 + b.21 / 3 + c
    ( 21 / 3 - 1 )( 22 / 3 + 21 / 3 + 1 )

    ( 21 / 3 - 1 )
    = a.22 / 3 + b.21 / 3 + c
    ( 2 - 1 )

    [ ∵ ( a + b )(a2 + b2 - ab) = a3 - b3 ]
    ⇒ a = 0, b = 1, c = – 1
    ∴ a + b + c = 0 + 1 – 1 = 0



  1. If x = ³√2 + √3 , then the value of x3 +
    1
     is
    x3










  1. View Hint View Answer Discuss in Forum

    x = ³√2 + √3
    Cubing on both sides ,
    ⇒ x3 = 2 + √3

    1
    =
    1
    x3 2 + √3

    1
    =
    1 × ( 2 - √3 )
    x3( 2 + √3 ) × ( 2 - √3 )

    =
    2 - √3
    = 2 - √3
    4 - 3

    ∴ x3 +
    1
    = 2 + √3 + 2 - √3 = 4
    x3

    Correct Option: D

    x = ³√2 + √3
    Cubing on both sides ,
    ⇒ x3 = 2 + √3

    1
    =
    1
    x3 2 + √3

    1
    =
    1 × ( 2 - √3 )
    x3( 2 + √3 ) × ( 2 - √3 )

    =
    2 - √3
    = 2 - √3
    4 - 3

    ∴ x3 +
    1
    = 2 + √3 + 2 - √3 = 4
    x3