Algebra


  1. If x = a (b – c), y = b (c – a) and z = c (a – b), then
    x
    3 +
    x
    3 +
    x
    3 =
    abc









  1. View Hint View Answer Discuss in Forum

    x
    = b - c ;  
    y
    = b - c ;  
    z
    = b - c
    abc

    Again, b – c + c – a + a – b = 0
    x
    3 +
    x
    3 +
    x
    3 = ( b - c )3 + ( c - a )3 + ( c - a )3
    abc

    = 3 (b – c) (c – a) (a – b)
    Required answer =
    3xyz
    abc

    Correct Option: C

    x
    = b - c ;  
    y
    = b - c ;  
    z
    = b - c
    abc

    Again, b – c + c – a + a – b = 0
    x
    3 +
    x
    3 +
    x
    3 = ( b - c )3 + ( c - a )3 + ( c - a )3
    abc

    = 3 (b – c) (c – a) (a – b)
    Required answer =
    3xyz
    abc


  1. If xy (x + y) = 1, then the value of
    1
    - x3 - y3 is :
    x3y3









  1. View Hint View Answer Discuss in Forum

    xy (x + y) = 1

    ⇒ x + y =
    1
    xy

    On cubing both sides,
    ⇒ x3 + y3 + 3xy (x + y) =
    1
    x3y3

    ⇒ x3 + y3 + 3xy ×
    1
    =
    1
    xyx3y3

    1
    - x3 - y3 = 3
    x3y3

    Correct Option: C

    xy (x + y) = 1

    ⇒ x + y =
    1
    xy

    On cubing both sides,
    ⇒ x3 + y3 + 3xy (x + y) =
    1
    x3y3

    ⇒ x3 + y3 + 3xy ×
    1
    =
    1
    xyx3y3

    1
    - x3 - y3 = 3
    x3y3



  1. If x4 +
    1
    = 119 ,and x > l, then the value of x3 -
    1
    is
    x4x3









  1. View Hint View Answer Discuss in Forum

    Using Rule1 and 8,

    x4 +
    1
    = 119
    x4

    x2 +
    1
    2 - 2 = 119
    x2

    x2 +
    1
    2 = 121
    x2

    ⇒ x2 +
    1
    = 11
    x2

    x -
    1
    2 + 2 = 11
    x

    x -
    1
    2 = 9
    x

    ⇒ x -
    1
    = 3
    x

    ∴ x3 -
    1
    - 3x -
    1
    = 27
    x3x

    ⇒ x3 -
    1
    - 3 × 3 = 27
    x3

    ⇒ x3 -
    1
    = 27 + 9 = 36
    x3

    Correct Option: D

    Using Rule1 and 8,

    x4 +
    1
    = 119
    x4

    x2 +
    1
    2 - 2 = 119
    x2

    x2 +
    1
    2 = 121
    x2

    ⇒ x2 +
    1
    = 11
    x2

    x -
    1
    2 + 2 = 11
    x

    x -
    1
    2 = 9
    x

    ⇒ x -
    1
    = 3
    x

    ∴ x3 -
    1
    - 3x -
    1
    = 27
    x3x

    ⇒ x3 -
    1
    - 3 × 3 = 27
    x3

    ⇒ x3 -
    1
    = 27 + 9 = 36
    x3


  1. If 3x +
    1
    = 5 , then the value of 8x3 +
    1
    is
    2x27x3










  1. View Hint View Answer Discuss in Forum

    Using Rule 8,

    3x +
    1
    = 5
    2x

    On multiplying both sides by ( 2 / 5 )
    ⇒ 2x +
    1
    =
    10
    3x3

    Cubing both sides,
    ∴ 8x3 +
    1
    + 3 × 2x ×
    1
    × 2x +
    1
    =
    1000
    27x33x3x27

    ⇒ 8x3 +
    1
    + 3 × 3 = 27
    8x3

    ⇒ 8x3 +
    1
    + 2 ×
    10
    =
    1000
    27x3327

    ⇒ 8x3 +
    1
    =
    1000
    -
    20
    27x3273

    ⇒ 8x3 +
    1
    =
    1000 - 180
    =
    820
    = 30
    10
    27x3272727

    Correct Option: B

    Using Rule 8,

    3x +
    1
    = 5
    2x

    On multiplying both sides by ( 2 / 5 )
    ⇒ 2x +
    1
    =
    10
    3x3

    Cubing both sides,
    ∴ 8x3 +
    1
    + 3 × 2x ×
    1
    × 2x +
    1
    =
    1000
    27x33x3x27

    ⇒ 8x3 +
    1
    + 3 × 3 = 27
    8x3

    ⇒ 8x3 +
    1
    + 2 ×
    10
    =
    1000
    27x3327

    ⇒ 8x3 +
    1
    =
    1000
    -
    20
    27x3273

    ⇒ 8x3 +
    1
    =
    1000 - 180
    =
    820
    = 30
    10
    27x3272727



  1. If x + y = z, then the expression x3 + y3 - z3 + 3xyz will be equal to :









  1. View Hint View Answer Discuss in Forum

    Using Rule 20,
    x + y = z ⇒ x + y + (–z) = 0
    ∴ x3 + y3 - z3 + 3xyz = x3 + y3 + ( - z )3 – 3x.y (–z) = 0

    Correct Option: A

    Using Rule 20,
    x + y = z ⇒ x + y + (–z) = 0
    ∴ x3 + y3 - z3 + 3xyz = x3 + y3 + ( - z )3 – 3x.y (–z) = 0