Algebra


  1. If  
    2x − y
    =
    1
    , then value of  
    3x − y
      is :
    x + 2y23x + y









  1. View Hint View Answer Discuss in Forum

    2x − y
    =
    1
    x + 2y2

    ⇒  4x – 2y = x + 2y
    ⇒  3x = 4y
    ⇒ 
    x
    =
    4
    y3


    = 3 ×
    4
    − 1
    3
    3 ×
    4
    + 1
    3

    =
    4 − 1
    =
    3
    4 + 15

    Correct Option: B

    2x − y
    =
    1
    x + 2y2

    ⇒  4x – 2y = x + 2y
    ⇒  3x = 4y
    ⇒ 
    x
    =
    4
    y3


    = 3 ×
    4
    − 1
    3
    3 ×
    4
    + 1
    3

    =
    4 − 1
    =
    3
    4 + 15


  1. If a and b be positive integers such that a2 – b2= 19, then the value of a is









  1. View Hint View Answer Discuss in Forum

    Tricky approach
    a2 – b2 = 19
    ⇒  102 – 92 = 19
    ⇒  a = 10

    Correct Option: D

    Tricky approach
    a2 – b2 = 19
    ⇒  102 – 92 = 19
    ⇒  a = 10



  1. 3 + x + √3 − x
    = 2 then x is equal to
    3 + x − √3 − x









  1. View Hint View Answer Discuss in Forum

    3 + x + √3 − x
    =
    2
    3 + x − √3 − x1

    By componendo and dividendo,
    ⇒ 
    2√3 + x
    =
    2 + 1
    = 3
    2√3 − x2 − 1

    Squaring on both sides, we get
    3 + x
    = 9
    3 − x

    ⇒  3 + x = 27 – 9x
    ⇒  9x + x = 27 – 3 = 24
    ⇒  x =
    24
    =
    12
    105

    Correct Option: B

    3 + x + √3 − x
    =
    2
    3 + x − √3 − x1

    By componendo and dividendo,
    ⇒ 
    2√3 + x
    =
    2 + 1
    = 3
    2√3 − x2 − 1

    Squaring on both sides, we get
    3 + x
    = 9
    3 − x

    ⇒  3 + x = 27 – 9x
    ⇒  9x + x = 27 – 3 = 24
    ⇒  x =
    24
    =
    12
    105


  1. If   x +
    1
    = 5, then
    2x
      is equal to
    x3x2 − 5x + 3









  1. View Hint View Answer Discuss in Forum

    x +
    1
    = 5
    x

    ⇒  x2 – 5x + 1 = 0
    ⇒  3x2 – 15x + 3 = 0
    ∴ 
    2x
    =
    2x
    3x2 – 5x + 315x – 5x

    =
    2x
    =
    1
    10x5

    Correct Option: B

    x +
    1
    = 5
    x

    ⇒  x2 – 5x + 1 = 0
    ⇒  3x2 – 15x + 3 = 0
    ∴ 
    2x
    =
    2x
    3x2 – 5x + 315x – 5x

    =
    2x
    =
    1
    10x5



  1. If   x =
    3
    , then the value of
    1 + x + √1 − x
      is
    21 + x − √1 − x









  1. View Hint View Answer Discuss in Forum

    x =
    3
    1
    =
    2
    2x3

    By componendo and dividendo,
    1 + x
    =
    2 + √3
    1 − x2 − √3

    ⇒ 
    1 + x
    =
    2 + √3
    ×
    2 + √3
    1 − x2 − √32 + √3

    =
    (2 + √3)2
    =
    (2 + √3)2
    (2 − 3 √3)(2 + √3)4 − 3

    ⇒ 
    1 + x
    = (2 + √3)2
    1 − x

    ∴ 
    1 + x
    =
    2 + √3
    1 − x1

    By componendo and dividendo
    1 + x + √1 − x
    =
    2 + √3 + 1
    1 + x − √1 − x2 + √3 − 1

    =
    3 + √3
    =
    3( √3 + 1)
    = √3
    3 + 13 + 1

    Correct Option: D

    x =
    3
    1
    =
    2
    2x3

    By componendo and dividendo,
    1 + x
    =
    2 + √3
    1 − x2 − √3

    ⇒ 
    1 + x
    =
    2 + √3
    ×
    2 + √3
    1 − x2 − √32 + √3

    =
    (2 + √3)2
    =
    (2 + √3)2
    (2 − 3 √3)(2 + √3)4 − 3

    ⇒ 
    1 + x
    = (2 + √3)2
    1 − x

    ∴ 
    1 + x
    =
    2 + √3
    1 − x1

    By componendo and dividendo
    1 + x + √1 − x
    =
    2 + √3 + 1
    1 + x − √1 − x2 + √3 − 1

    =
    3 + √3
    =
    3( √3 + 1)
    = √3
    3 + 13 + 1