Algebra
-
If 2x − y = 1 , then value of 3x − y is : x + 2y 2 3x + y
-
View Hint View Answer Discuss in Forum
2x − y = 1 x + 2y 2
⇒ 4x – 2y = x + 2y
⇒ 3x = 4y
⇒ x = 4 y 3 = 3 × 4 − 1 3 3 × 4 + 1 3 = 4 − 1 = 3 4 + 1 5 Correct Option: B
2x − y = 1 x + 2y 2
⇒ 4x – 2y = x + 2y
⇒ 3x = 4y
⇒ x = 4 y 3 = 3 × 4 − 1 3 3 × 4 + 1 3 = 4 − 1 = 3 4 + 1 5
- If a and b be positive integers such that a2 – b2= 19, then the value of a is
-
View Hint View Answer Discuss in Forum
Tricky approach
a2 – b2 = 19
⇒ 102 – 92 = 19
⇒ a = 10Correct Option: D
Tricky approach
a2 – b2 = 19
⇒ 102 – 92 = 19
⇒ a = 10
-
√3 + x + √3 − x = 2 then x is equal to √3 + x − √3 − x
-
View Hint View Answer Discuss in Forum
√3 + x + √3 − x = 2 √3 + x − √3 − x 1
By componendo and dividendo,⇒ 2√3 + x = 2 + 1 = 3 2√3 − x 2 − 1
Squaring on both sides, we get3 + x = 9 3 − x
⇒ 3 + x = 27 – 9x
⇒ 9x + x = 27 – 3 = 24⇒ x = 24 = 12 10 5 Correct Option: B
√3 + x + √3 − x = 2 √3 + x − √3 − x 1
By componendo and dividendo,⇒ 2√3 + x = 2 + 1 = 3 2√3 − x 2 − 1
Squaring on both sides, we get3 + x = 9 3 − x
⇒ 3 + x = 27 – 9x
⇒ 9x + x = 27 – 3 = 24⇒ x = 24 = 12 10 5
-
If x + 1 = 5, then 2x is equal to x 3x2 − 5x + 3
-
View Hint View Answer Discuss in Forum
x + 1 = 5 x
⇒ x2 – 5x + 1 = 0
⇒ 3x2 – 15x + 3 = 0∴ 2x = 2x 3x2 – 5x + 3 15x – 5x = 2x = 1 10x 5 Correct Option: B
x + 1 = 5 x
⇒ x2 – 5x + 1 = 0
⇒ 3x2 – 15x + 3 = 0∴ 2x = 2x 3x2 – 5x + 3 15x – 5x = 2x = 1 10x 5
-
If x = √3 , then the value of √1 + x + √1 − x is 2 √1 + x − √1 − x
-
View Hint View Answer Discuss in Forum
x = √3 ⇒ 1 = 2 2 x √3
By componendo and dividendo,1 + x = 2 + √3 1 − x 2 − √3 ⇒ 1 + x = 2 + √3 × 2 + √3 1 − x 2 − √3 2 + √3 = (2 + √3)2 = (2 + √3)2 (2 − 3 √3)(2 + √3) 4 − 3 ⇒ 1 + x = (2 + √3)2 1 − x ∴ √1 + x = 2 + √3 √1 − x 1
By componendo and dividendo√1 + x + √1 − x = 2 + √3 + 1 √1 + x − √1 − x 2 + √3 − 1 = 3 + √3 = √3( √3 + 1) = √3 √3 + 1 √3 + 1 Correct Option: D
x = √3 ⇒ 1 = 2 2 x √3
By componendo and dividendo,1 + x = 2 + √3 1 − x 2 − √3 ⇒ 1 + x = 2 + √3 × 2 + √3 1 − x 2 − √3 2 + √3 = (2 + √3)2 = (2 + √3)2 (2 − 3 √3)(2 + √3) 4 − 3 ⇒ 1 + x = (2 + √3)2 1 − x ∴ √1 + x = 2 + √3 √1 − x 1
By componendo and dividendo√1 + x + √1 − x = 2 + √3 + 1 √1 + x − √1 − x 2 + √3 − 1 = 3 + √3 = √3( √3 + 1) = √3 √3 + 1 √3 + 1