Algebra


  1. If x = 2 - 21 / 3 + 22 / 3, then the value of x3– 6x2 + 18x + 18 is









  1. View Hint View Answer Discuss in Forum

    x = 2 - 21 / 3 + 22 / 3
    ⇒ x – 2 = 22 / 3 - 21 / 3
    On cubing both sides ,
    ⇒ x3 - 3x2 × 2 + 3x × 4 – 8 = ( 22 / 3 )3 - ( 21 / 3 )3 - 3 . 22 / 3 . 21 / 3( 22 / 3 - 21 / 3 )
    ⇒ x3 - 6x2 + 12x – 8 = = 4 – 2 – 6 (x – 2)
    ⇒ x3 - 6x2 + 12x – 8 = = 2 – 6x + 12
    ⇒ x3 - 6x2 + 18x + 18 = 2 + 12 + 8 + 18 = 40

    Correct Option: C

    x = 2 - 21 / 3 + 22 / 3
    ⇒ x – 2 = 22 / 3 - 21 / 3
    On cubing both sides ,
    ⇒ x3 - 3x2 × 2 + 3x × 4 – 8 = ( 22 / 3 )3 - ( 21 / 3 )3 - 3 . 22 / 3 . 21 / 3( 22 / 3 - 21 / 3 )
    ⇒ x3 - 6x2 + 12x – 8 = = 4 – 2 – 6 (x – 2)
    ⇒ x3 - 6x2 + 12x – 8 = = 2 – 6x + 12
    ⇒ x3 - 6x2 + 18x + 18 = 2 + 12 + 8 + 18 = 40


  1. If a3 - b3 - c3 – 3abc = 0, then









  1. View Hint View Answer Discuss in Forum

    Using Rule 21,
    a3 + b3 + c3 – 3abc = 0
    If a + b + c = 0 , a3 - b3 - c3 – 3abc = 0
    ⇒ a - b - c = 0
    ⇒ a = b + c

    Correct Option: D

    Using Rule 21,
    a3 + b3 + c3 – 3abc = 0
    If a + b + c = 0 , a3 - b3 - c3 – 3abc = 0
    ⇒ a - b - c = 0
    ⇒ a = b + c



  1. If p, q, r are all real numbers, then (p – q)3 + (q – r)3 + (r – p)3 is
    equal to









  1. View Hint View Answer Discuss in Forum

    Using Rule 21,
    Here, p – q + q – r + r – p = 0
    ∴ (p – q)3 + (q – r)3 + (r – p)3 = 3(p – q)(q – r)(r – p)
    [Formula : If a + b + c = 0 , then a3 + b3 + c3 = 3abc]

    Correct Option: B

    Using Rule 21,
    Here, p – q + q – r + r – p = 0
    ∴ (p – q)3 + (q – r)3 + (r – p)3 = 3(p – q)(q – r)(r – p)
    [Formula : If a + b + c = 0 , then a3 + b3 + c3 = 3abc]


  1. If a = 2·361, b = 3·263 and c = 5·624, then the value of a3 - b3 - c3 + 3abc is









  1. View Hint View Answer Discuss in Forum

    Using Rule 21,
    a + b + (–c) = 2.361 + 3.263 – 5.624 = 0
    ∴ a3 + b3 + [ -c3 - 3ab(-c) ] = 0
    i.e. a3 + b3 – c3 + 3abc = 0

    Correct Option: B

    Using Rule 21,
    a + b + (–c) = 2.361 + 3.263 – 5.624 = 0
    ∴ a3 + b3 + [ -c3 - 3ab(-c) ] = 0
    i.e. a3 + b3 – c3 + 3abc = 0



  1. If a + b + c = 6, a2 + b2 + c2 = 14 and a3 + b3 + c3 = 36 , then the value of abc is









  1. View Hint View Answer Discuss in Forum

    (a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca)
    ⇒ 36 = 14 + 2(ab + bc + ca)
    ⇒ ab + bc + ca = (36 – 14) ÷ 2
    ⇒ ab + bc + ca = 11 ....(i)
    ∴ a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca)
    ⇒ 36 – 3abc = 6 (14 – 11) [By (i)]
    ⇒ 36 – 3abc = 84 – 66 = 18
    ⇒ 3abc = 36 – 18 = 18
    ⇒ abc = 6

    Correct Option: B

    (a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca)
    ⇒ 36 = 14 + 2(ab + bc + ca)
    ⇒ ab + bc + ca = (36 – 14) ÷ 2
    ⇒ ab + bc + ca = 11 ....(i)
    ∴ a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca)
    ⇒ 36 – 3abc = 6 (14 – 11) [By (i)]
    ⇒ 36 – 3abc = 84 – 66 = 18
    ⇒ 3abc = 36 – 18 = 18
    ⇒ abc = 6