Algebra
- If x = 2 - 21 / 3 + 22 / 3, then the value of x3– 6x2 + 18x + 18 is
-
View Hint View Answer Discuss in Forum
x = 2 - 21 / 3 + 22 / 3
⇒ x – 2 = 22 / 3 - 21 / 3
On cubing both sides ,
⇒ x3 - 3x2 × 2 + 3x × 4 – 8 = ( 22 / 3 )3 - ( 21 / 3 )3 - 3 . 22 / 3 . 21 / 3( 22 / 3 - 21 / 3 )
⇒ x3 - 6x2 + 12x – 8 = = 4 – 2 – 6 (x – 2)
⇒ x3 - 6x2 + 12x – 8 = = 2 – 6x + 12
⇒ x3 - 6x2 + 18x + 18 = 2 + 12 + 8 + 18 = 40Correct Option: C
x = 2 - 21 / 3 + 22 / 3
⇒ x – 2 = 22 / 3 - 21 / 3
On cubing both sides ,
⇒ x3 - 3x2 × 2 + 3x × 4 – 8 = ( 22 / 3 )3 - ( 21 / 3 )3 - 3 . 22 / 3 . 21 / 3( 22 / 3 - 21 / 3 )
⇒ x3 - 6x2 + 12x – 8 = = 4 – 2 – 6 (x – 2)
⇒ x3 - 6x2 + 12x – 8 = = 2 – 6x + 12
⇒ x3 - 6x2 + 18x + 18 = 2 + 12 + 8 + 18 = 40
- If a3 - b3 - c3 – 3abc = 0, then
-
View Hint View Answer Discuss in Forum
Using Rule 21,
a3 + b3 + c3 – 3abc = 0
If a + b + c = 0 , a3 - b3 - c3 – 3abc = 0
⇒ a - b - c = 0
⇒ a = b + cCorrect Option: D
Using Rule 21,
a3 + b3 + c3 – 3abc = 0
If a + b + c = 0 , a3 - b3 - c3 – 3abc = 0
⇒ a - b - c = 0
⇒ a = b + c
- If p, q, r are all real numbers, then (p – q)3 + (q – r)3 + (r – p)3 is
equal to
-
View Hint View Answer Discuss in Forum
Using Rule 21,
Here, p – q + q – r + r – p = 0
∴ (p – q)3 + (q – r)3 + (r – p)3 = 3(p – q)(q – r)(r – p)
[Formula : If a + b + c = 0 , then a3 + b3 + c3 = 3abc]Correct Option: B
Using Rule 21,
Here, p – q + q – r + r – p = 0
∴ (p – q)3 + (q – r)3 + (r – p)3 = 3(p – q)(q – r)(r – p)
[Formula : If a + b + c = 0 , then a3 + b3 + c3 = 3abc]
- If a = 2·361, b = 3·263 and c = 5·624, then the value of a3 - b3 - c3 + 3abc is
-
View Hint View Answer Discuss in Forum
Using Rule 21,
a + b + (–c) = 2.361 + 3.263 – 5.624 = 0
∴ a3 + b3 + [ -c3 - 3ab(-c) ] = 0
i.e. a3 + b3 – c3 + 3abc = 0Correct Option: B
Using Rule 21,
a + b + (–c) = 2.361 + 3.263 – 5.624 = 0
∴ a3 + b3 + [ -c3 - 3ab(-c) ] = 0
i.e. a3 + b3 – c3 + 3abc = 0
- If a + b + c = 6, a2 + b2 + c2 = 14 and a3 + b3 + c3 = 36 , then the value of abc is
-
View Hint View Answer Discuss in Forum
(a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca)
⇒ 36 = 14 + 2(ab + bc + ca)
⇒ ab + bc + ca = (36 – 14) ÷ 2
⇒ ab + bc + ca = 11 ....(i)
∴ a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca)
⇒ 36 – 3abc = 6 (14 – 11) [By (i)]
⇒ 36 – 3abc = 84 – 66 = 18
⇒ 3abc = 36 – 18 = 18
⇒ abc = 6Correct Option: B
(a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca)
⇒ 36 = 14 + 2(ab + bc + ca)
⇒ ab + bc + ca = (36 – 14) ÷ 2
⇒ ab + bc + ca = 11 ....(i)
∴ a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca)
⇒ 36 – 3abc = 6 (14 – 11) [By (i)]
⇒ 36 – 3abc = 84 – 66 = 18
⇒ 3abc = 36 – 18 = 18
⇒ abc = 6