Algebra
-
For what value(s) of a is x + 1 √x + a2 a perfect square ? 4
-
View Hint View Answer Discuss in Forum
x + 1 √x + a2 4 = (√x)2 + 2.√x. 1 + (a)2 8 Clearly a = 1 8 Then, expression = √x + 1 2 8 Correct Option: B
x + 1 √x + a2 4 = (√x)2 + 2.√x. 1 + (a)2 8 Clearly a = 1 8 Then, expression = √x + 1 2 8
- If a ≠ b, then which of the following statements is true ?
-
View Hint View Answer Discuss in Forum
Arithmetic mean (AM) = a + b 2
Geometric mean (GM) = √ab
As AM > GMa + b > √ab 2 Correct Option: C
Arithmetic mean (AM) = a + b 2
Geometric mean (GM) = √ab
As AM > GMa + b > √ab 2
-
If a + b + c = 1, then the value of 1 + 1 + 1 is 1 − a 1 − b 1 − c 1 − a 1 − b 1 − c
-
View Hint View Answer Discuss in Forum
Tricky Approach
a + b + c = 1 1 − a 1 − b 1 − c ⇒ a + 1 + b + 1 + c + 1 = 3 + 1 = 4 1 − a 1 − b 1 − c ⇒ a + 1 − a + b + 1 − b + c + 1 − c = 4 1 − a 1 − b 1 − c ⇒ 1 + 1 + 1 = 4 1 − a 1 − b 1 − c Correct Option: D
Tricky Approach
a + b + c = 1 1 − a 1 − b 1 − c ⇒ a + 1 + b + 1 + c + 1 = 3 + 1 = 4 1 − a 1 − b 1 − c ⇒ a + 1 − a + b + 1 − b + c + 1 − c = 4 1 − a 1 − b 1 − c ⇒ 1 + 1 + 1 = 4 1 − a 1 − b 1 − c
- If x, y are two positive real numbers and x1/3 = y1/4 , then which of the following relations is true?
-
View Hint View Answer Discuss in Forum
x1/3 = y1/4
⇒ (x1/3)12 = (y1/4)12 ⇒ x4 = y3
⇒ (x4)5 = (y3)5 ⇒ x20 = y15Correct Option: D
x1/3 = y1/4
⇒ (x1/3)12 = (y1/4)12 ⇒ x4 = y3
⇒ (x4)5 = (y3)5 ⇒ x20 = y15
- If x is real, then the minimum value of (x2 – x + 1) is
-
View Hint View Answer Discuss in Forum
For expression ax2 + bx + c, a > 0, the minimum value is given by
4ac − b2 4a
Here, for x2 – x + 1
a = 1, b = –1, c = 1∴ Minimum value = 4 × 1 × 1 − 1 = 3 4 × 1 4 Correct Option: A
For expression ax2 + bx + c, a > 0, the minimum value is given by
4ac − b2 4a
Here, for x2 – x + 1
a = 1, b = –1, c = 1∴ Minimum value = 4 × 1 × 1 − 1 = 3 4 × 1 4