Algebra
- If x + y + z = 6 and xy + yz + zx = 10 then the value of x3 + y3 + z3 – 3xyz is :
-
View Hint View Answer Discuss in Forum
x + y + z = 6
xy + yz + zx = 10
∴ (x + y + z)2 = 36
⇒ x2 + y2 + z2 + 2xy + 2yz + 2zx = 36
⇒ x2 + y2 + z2 + 2 × 10 = 36
⇒ x2 + y2 + z2 = 36 – 20 = 16
∴ x3 + y3 + z3 - 3xyz = (x + y + z)( x2 + y2 + z2 – xy – yz – zx) = 6 (16 – 10) = 6 × 6 = 36Correct Option: A
x + y + z = 6
xy + yz + zx = 10
∴ (x + y + z)2 = 36
⇒ x2 + y2 + z2 + 2xy + 2yz + 2zx = 36
⇒ x2 + y2 + z2 + 2 × 10 = 36
⇒ x2 + y2 + z2 = 36 – 20 = 16
∴ x3 + y3 + z3 - 3xyz = (x + y + z)( x2 + y2 + z2 – xy – yz – zx) = 6 (16 – 10) = 6 × 6 = 36
- If p3 - q3 = (p – q){(p – q)2 – xpq} then find the value of x
-
View Hint View Answer Discuss in Forum
p3 - q3 = (p – q){(p – q)2 – xpq}
⇒ (p – q)(p2 + q2 + pq) = (p – q)(p2 + q2 – 2pq – xpq)
⇒ (p2 + q2 + pq) = p2 + q2 – (2 + x) pq
∴ – (2 + x) = 1
⇒ x = –2 – 1 = –3Correct Option: B
p3 - q3 = (p – q){(p – q)2 – xpq}
⇒ (p – q)(p2 + q2 + pq) = (p – q)(p2 + q2 – 2pq – xpq)
⇒ (p2 + q2 + pq) = p2 + q2 – (2 + x) pq
∴ – (2 + x) = 1
⇒ x = –2 – 1 = –3
- If x – √3 – √2 = 0 and y – √3 + √2 = 0, then the value (x3 - 20√2) - (y3 + 20√2) is
-
View Hint View Answer Discuss in Forum
x – √3 – √2 = 0
⇒ x = √3 + √2
Again,
y – √3 + √2 = 0
⇒ y = √3 - √2
∴ x – y = √3 + √2 - √3 + √2 = 2√2
and xy = (√3 + √2)(√3 - √2) = 3 – 2 = 1
∴ Expression = x3 - 20√2 - y3 - 2√2 = x3 - y3 - 22√2
Expression = (x - y)3 + 3xy(x – y) – 22√2
Expression = (2√2)3 + 3(2√2) – 22√2 = 16 √2 + 6 √2 - 22 √2 = 0Correct Option: A
x – √3 – √2 = 0
⇒ x = √3 + √2
Again,
y – √3 + √2 = 0
⇒ y = √3 - √2
∴ x – y = √3 + √2 - √3 + √2 = 2√2
and xy = (√3 + √2)(√3 - √2) = 3 – 2 = 1
∴ Expression = x3 - 20√2 - y3 - 2√2 = x3 - y3 - 22√2
Expression = (x - y)3 + 3xy(x – y) – 22√2
Expression = (2√2)3 + 3(2√2) – 22√2 = 16 √2 + 6 √2 - 22 √2 = 0
-
If x2 + y2 + z2 = xy + yz + zx then the value of 3x4 + 7y4 + 5z4 is 5x2y2 + 7y2z2 + 3z2x2
-
View Hint View Answer Discuss in Forum
x2 + y2 + z2 = xy + yz + zx
⇒ x2 + y2 + z2 - xy - yz - zx = 0
⇒ 2x2 + 2y2 + 2z2 - 2xy - 2yz - 2zx = 0
⇒ x2 + y2 - 2xy + y2 + z2 - 2yz + z2 + x2 - 2zx = 0
⇒ (x - y)2 + (y - z)2 + (z - x)2 = 0
∴ x – y = 0 ⇒ x = y
y – z = 0 ⇒ y = z
z – x = 0 ⇒ z = x
∴ x = y = z
[If a2 + b2 + c2 = 0, then a = 0, b = 0, c = 0]∴ Expression = 3x4 + 7y4 + 5z4 5x2y2 + 7y2z2 + 3z2x2 Expression = 3x4 + 7x4 + 5x4 5x4 + 7x4 + 3x4 Expression = 15x4 = 1 15x4
Correct Option: B
x2 + y2 + z2 = xy + yz + zx
⇒ x2 + y2 + z2 - xy - yz - zx = 0
⇒ 2x2 + 2y2 + 2z2 - 2xy - 2yz - 2zx = 0
⇒ x2 + y2 - 2xy + y2 + z2 - 2yz + z2 + x2 - 2zx = 0
⇒ (x - y)2 + (y - z)2 + (z - x)2 = 0
∴ x – y = 0 ⇒ x = y
y – z = 0 ⇒ y = z
z – x = 0 ⇒ z = x
∴ x = y = z
[If a2 + b2 + c2 = 0, then a = 0, b = 0, c = 0]∴ Expression = 3x4 + 7y4 + 5z4 5x2y2 + 7y2z2 + 3z2x2 Expression = 3x4 + 7x4 + 5x4 5x4 + 7x4 + 3x4 Expression = 15x4 = 1 15x4
- If x = a1 / 3 + a-1 / 3 , y = a1 / 2 - a-1 / 2 then value of (x4 - x2y2 – 1) + (y4 - x2y2 + 1) is
-
View Hint View Answer Discuss in Forum
x = a1 / 3 + a-1 / 3
y = a1 / 2 - a-1 / 2
∴ x2 – y2 = 4a1 / 2.a-1 / 2 = 4
[∴ (a + b)2 – (a – b)2 = 4ab]
Again, y2 - x2 = -4a1 / 2.a-1 / 2 = -4
Expression = (x4 - x2y2 – 1) + (y4 - x2y2 + 1)
Expression = x2(x2 - y2) – 1 + y2(y2 - x2) + 1
Expression = 4x2 - 1 - 4y2 + 1
Expression = 4(x2 - y2) = 4 × 4 = 16Correct Option: A
x = a1 / 3 + a-1 / 3
y = a1 / 2 - a-1 / 2
∴ x2 – y2 = 4a1 / 2.a-1 / 2 = 4
[∴ (a + b)2 – (a – b)2 = 4ab]
Again, y2 - x2 = -4a1 / 2.a-1 / 2 = -4
Expression = (x4 - x2y2 – 1) + (y4 - x2y2 + 1)
Expression = x2(x2 - y2) – 1 + y2(y2 - x2) + 1
Expression = 4x2 - 1 - 4y2 + 1
Expression = 4(x2 - y2) = 4 × 4 = 16