Algebra


  1. If x = y = z, then
    (x + y + z)2
    is equal to
    x2 + y2 + z2










  1. View Hint View Answer Discuss in Forum

    x = y = z

    ∴ Expression =
    (x + y + z)2
    x2 + y2 + z2

    Expression =
    (x + x + x)2
    x2 + x2 + x2

    Expression =
    9x2
    = 3
    3x2

    Correct Option: C

    x = y = z

    ∴ Expression =
    (x + y + z)2
    x2 + y2 + z2

    Expression =
    (x + x + x)2
    x2 + x2 + x2

    Expression =
    9x2
    = 3
    3x2


  1. If x = y = z, then
    (x + y + z)2
    is equal to
    x2 + y2 + z2










  1. View Hint View Answer Discuss in Forum

    x = y = z

    ∴ Expression =
    (x + y + z)2
    x2 + y2 + z2

    Expression =
    (x + x + x)2
    x2 + x2 + x2

    Expression =
    9x2
    = 3
    3x2

    Correct Option: C

    x = y = z

    ∴ Expression =
    (x + y + z)2
    x2 + y2 + z2

    Expression =
    (x + x + x)2
    x2 + x2 + x2

    Expression =
    9x2
    = 3
    3x2



  1. If x = a (b – c), y = b (c – a), z = c (a – b), then the value of
    x
    3 +
    y
    3 +
    z
    3 is :
    abc










  1. View Hint View Answer Discuss in Forum

    x = a (b – c)

    x
    = b – c
    a

    Similarly, y = b (c – a)
    y
    = c – a
    b

    and
    z
    = a – b
    c

    x
    +
    y
    +
    z
    = b – c + c – a + a – b = 0
    abc

    x
    3 +
    y
    3 +
    z
    3 = 3 ×
    x
    ×
    y
    ×
    z
    =
    3xyz
    abcabcabc

    [If a + b + c = 0, a3 + b3 + c3 = 3 abc]

    Correct Option: D

    x = a (b – c)

    x
    = b – c
    a

    Similarly, y = b (c – a)
    y
    = c – a
    b

    and
    z
    = a – b
    c

    x
    +
    y
    +
    z
    = b – c + c – a + a – b = 0
    abc

    x
    3 +
    y
    3 +
    z
    3 = 3 ×
    x
    ×
    y
    ×
    z
    =
    3xyz
    abcabcabc

    [If a + b + c = 0, a3 + b3 + c3 = 3 abc]


  1. If a2 + a + 1 = 0 , then the value of a5 + a4 + 1 is :









  1. View Hint View Answer Discuss in Forum

    a2 + a + 1 = 0

    a2 + a + 1
    = 0
    a

    ⇒ a + 1 +
    1
    = 0 ....(i)
    a

    Expression = a5 + a4 + 1 = a4(a + 1) + 1
    Expression = a4 -
    1
    + 1
    a

    Expression = -a3 + 1 = 1 - a3
    Expression = (1 – a) (1 + a + a2)
    Expression = (1 – a) × 0 = 0

    Correct Option: C

    a2 + a + 1 = 0

    a2 + a + 1
    = 0
    a

    ⇒ a + 1 +
    1
    = 0 ....(i)
    a

    Expression = a5 + a4 + 1 = a4(a + 1) + 1
    Expression = a4 -
    1
    + 1
    a

    Expression = -a3 + 1 = 1 - a3
    Expression = (1 – a) (1 + a + a2)
    Expression = (1 – a) × 0 = 0



  1. If x -
    1
    = 2 , then the value of x3 -
    1
    is :
    xx3










  1. View Hint View Answer Discuss in Forum

    x -
    1
    = 2
    x

    On cubing both sides,
    x +
    1
    3 = 23
    x

    ⇒ x3 -
    1
    - 3x -
    1
    = 8
    x3x

    ⇒ x3 -
    1
    = 3 × 2 = 8
    x3

    ⇒ x3 -
    1
    = 8 + 6 = 14
    x3

    Correct Option: C

    x -
    1
    = 2
    x

    On cubing both sides,
    x +
    1
    3 = 23
    x

    ⇒ x3 -
    1
    - 3x -
    1
    = 8
    x3x

    ⇒ x3 -
    1
    = 3 × 2 = 8
    x3

    ⇒ x3 -
    1
    = 8 + 6 = 14
    x3