Algebra
- If a + b = 1 and a3 + b3 + 3ab = k, then the value of k is
-
View Hint View Answer Discuss in Forum
Using Rule 8,
a + b = 1
Cubing both sides,
(a + b)3 = 13 = 1
⇒ a3 + b3 + 3ab(a + b ) = 1
⇒ a3 + b3 + 3ab = 1 = k
⇒ k = 1Correct Option: A
Using Rule 8,
a + b = 1
Cubing both sides,
(a + b)3 = 13 = 1
⇒ a3 + b3 + 3ab(a + b ) = 1
⇒ a3 + b3 + 3ab = 1 = k
⇒ k = 1
- If a = 34, b = c = 33, then the value of a3 + b3 + c3 – 3abc is
-
View Hint View Answer Discuss in Forum
Using Rule 22,
a3 + b3 + c3 - 3abc = 1 (a + b + c)[ (a - b)2 + (b - c)2 + (c - a)2 ] 2
Here , a = 34, b = c = 33⇒ a3 + b3 + c3 - 3abc = 1 (34 + 33 + 33)[ (34 - 33)2 + (33 - 33)2 + (33 - 34)2 ] 2 ⇒ a3 + b3 + c3 - 3abc = 1 × 100[ 1 + 0 + 1 ] = 100 2
Correct Option: D
Using Rule 22,
a3 + b3 + c3 - 3abc = 1 (a + b + c)[ (a - b)2 + (b - c)2 + (c - a)2 ] 2
Here , a = 34, b = c = 33⇒ a3 + b3 + c3 - 3abc = 1 (34 + 33 + 33)[ (34 - 33)2 + (33 - 33)2 + (33 - 34)2 ] 2 ⇒ a3 + b3 + c3 - 3abc = 1 × 100[ 1 + 0 + 1 ] = 100 2
- If a = √7 + 2√12 and b = √7 - 2√12 , then ( a3 + b3 ) is equal to
-
View Hint View Answer Discuss in Forum
a = √7 + 2 × √4 × √3
= √4 + 3 + 2 × 2 × √3
= √( 2 + √3 )2 = 2 + √3
∴ b = √7 - 2√12 = 2 - √3
⇒ a + b = 2 + √3 + 2 - √3 = 4
ab = (2 + √3)(2 - √3) = 1
∴ a3 + b3 = ( a + b )3 - 3ab(a + b)
= 64 – 3 × 4 = 52Correct Option: D
a = √7 + 2 × √4 × √3
= √4 + 3 + 2 × 2 × √3
= √( 2 + √3 )2 = 2 + √3
∴ b = √7 - 2√12 = 2 - √3
⇒ a + b = 2 + √3 + 2 - √3 = 4
ab = (2 + √3)(2 - √3) = 1
∴ a3 + b3 = ( a + b )3 - 3ab(a + b)
= 64 – 3 × 4 = 52
-
If a = b2 then the value of a3 + b3 is b - a
-
View Hint View Answer Discuss in Forum
a = b2 ⇒ ab - a2 = b2 b - a
⇒ a2 + b2 - ab = 0
∴ a3 + b3 = ( a + b )(a2 + b2 - ab)
= (a + b) × 0 = 0Correct Option: B
a = b2 ⇒ ab - a2 = b2 b - a
⇒ a2 + b2 - ab = 0
∴ a3 + b3 = ( a + b )(a2 + b2 - ab)
= (a + b) × 0 = 0
- If p = 99, then value of p(p2 + 3p + 3) is
-
View Hint View Answer Discuss in Forum
Using Rule 8
Expression = p(p2 + 3p + 3)
Expression = (p3 + 3p2 + 3p + 1) – 1
Expression = (p + 1)3 – 1 = (99 + 1)3 – 1
Expression = (100)3 – 1= 1000000 – 1 = 999999Correct Option: D
Using Rule 8
Expression = p(p2 + 3p + 3)
Expression = (p3 + 3p2 + 3p + 1) – 1
Expression = (p + 1)3 – 1 = (99 + 1)3 – 1
Expression = (100)3 – 1= 1000000 – 1 = 999999