Algebra


  1. If x2 + y2 + 2x + 1 = 0, then the value of x31 + y35 is









  1. View Hint View Answer Discuss in Forum

    x2 + y2 + 2x + 1 = 0
    ⇒  x2 + 2x + 1 + y2 = 0
    ⇒  (x + 1)2 + y2 = 0
    ⇒  x + 1 = 0 ⇒ x = –1 and y = 0
    ∴  x31 + y35 = –1

    Correct Option: A

    x2 + y2 + 2x + 1 = 0
    ⇒  x2 + 2x + 1 + y2 = 0
    ⇒  (x + 1)2 + y2 = 0
    ⇒  x + 1 = 0 ⇒ x = –1 and y = 0
    ∴  x31 + y35 = –1


  1. If  1.5 a = 0.04 b then  
    b − a
      is equal to
    b + a









  1. View Hint View Answer Discuss in Forum

    Tricky Approach
    1.5a = 0.04b

    b
    =
    1.5
    a0.04

    By componendo and dividendo,
    b − a
    =
    1.5 − 0.04
    b + a1.5 + 0.04

    =
    1.46
    =
    73
    1.5477

    Correct Option: A

    Tricky Approach
    1.5a = 0.04b

    b
    =
    1.5
    a0.04

    By componendo and dividendo,
    b − a
    =
    1.5 − 0.04
    b + a1.5 + 0.04

    =
    1.46
    =
    73
    1.5477



  1. If   x = (√2 + 1)−1/3, the value of x3
    1
      is
    x3









  1. View Hint View Answer Discuss in Forum

    x = (√2 + 1)−1/3
    ⇒  x−3 = √2 + 1

    ⇒ 
    1
    = √2 + 1
    x3

    and x3 =
    1
    =
    1(√2 − 1)
    2 + 1(√2 + 1) (√2 − 1)

    = √2 − 1
    ∴  x3
    1
    x3

    = √2 − 1 − √2 − 1 = – 2

    Correct Option: C

    x = (√2 + 1)−1/3
    ⇒  x−3 = √2 + 1

    ⇒ 
    1
    = √2 + 1
    x3

    and x3 =
    1
    =
    1(√2 − 1)
    2 + 1(√2 + 1) (√2 − 1)

    = √2 − 1
    ∴  x3
    1
    x3

    = √2 − 1 − √2 − 1 = – 2


  1. If  
    x2 − x + 1
    =
    2
    , then the value of   x −
    1
      is
    x2 + x + 13x









  1. View Hint View Answer Discuss in Forum

    x2 − x + 1
    =
    2
    x2 + x + 13

    ⇒ 
    x2 + 1 − x
    =
    2
    x2 + x + 13

    Dividing numerator and denominator by x,

    ⇒  3x +
    1
    − 3 = 2x +
    1
    + 2
    xx

    ⇒  x +
    1
    = 2 + 3 = 5
    x

    Correct Option: B

    x2 − x + 1
    =
    2
    x2 + x + 13

    ⇒ 
    x2 + 1 − x
    =
    2
    x2 + x + 13

    Dividing numerator and denominator by x,

    ⇒  3x +
    1
    − 3 = 2x +
    1
    + 2
    xx

    ⇒  x +
    1
    = 2 + 3 = 5
    x



  1. If x, y and z are real numbers such that (x– 3)2 + (y – 4)2 + (z – 5)2 = 0 then (x + y + z) is equal to









  1. View Hint View Answer Discuss in Forum

    (x – 3)2 + (y – 4)2 + (z – 5)2 = 0
    ⇒  x – 3 = 0, y – 4 = 0 and z – 5 = 0
    ⇒  x = 3, y = 4 and z = 5
    ∴  x + y + z = 3 + 4 + 5 = 12

    Correct Option: D

    (x – 3)2 + (y – 4)2 + (z – 5)2 = 0
    ⇒  x – 3 = 0, y – 4 = 0 and z – 5 = 0
    ⇒  x = 3, y = 4 and z = 5
    ∴  x + y + z = 3 + 4 + 5 = 12