Algebra
- If x2 + y2 + 2x + 1 = 0, then the value of x31 + y35 is
-
View Hint View Answer Discuss in Forum
x2 + y2 + 2x + 1 = 0
⇒ x2 + 2x + 1 + y2 = 0
⇒ (x + 1)2 + y2 = 0
⇒ x + 1 = 0 ⇒ x = –1 and y = 0
∴ x31 + y35 = –1Correct Option: A
x2 + y2 + 2x + 1 = 0
⇒ x2 + 2x + 1 + y2 = 0
⇒ (x + 1)2 + y2 = 0
⇒ x + 1 = 0 ⇒ x = –1 and y = 0
∴ x31 + y35 = –1
-
If 1.5 a = 0.04 b then b − a is equal to b + a
-
View Hint View Answer Discuss in Forum
Tricky Approach
1.5a = 0.04bb = 1.5 a 0.04
By componendo and dividendo,b − a = 1.5 − 0.04 b + a 1.5 + 0.04 = 1.46 = 73 1.54 77 Correct Option: A
Tricky Approach
1.5a = 0.04bb = 1.5 a 0.04
By componendo and dividendo,b − a = 1.5 − 0.04 b + a 1.5 + 0.04 = 1.46 = 73 1.54 77
-
If x = (√2 + 1)−1/3, the value of x3 − 1 is x3
-
View Hint View Answer Discuss in Forum
x = (√2 + 1)−1/3
⇒ x−3 = √2 + 1⇒ 1 = √2 + 1 x3 and x3 = 1 = 1(√2 − 1) √2 + 1 (√2 + 1) (√2 − 1)
= √2 − 1∴ x3 − 1 x3
= √2 − 1 − √2 − 1 = – 2Correct Option: C
x = (√2 + 1)−1/3
⇒ x−3 = √2 + 1⇒ 1 = √2 + 1 x3 and x3 = 1 = 1(√2 − 1) √2 + 1 (√2 + 1) (√2 − 1)
= √2 − 1∴ x3 − 1 x3
= √2 − 1 − √2 − 1 = – 2
-
If x2 − x + 1 = 2 , then the value of x − 1 is x2 + x + 1 3 x
-
View Hint View Answer Discuss in Forum
x2 − x + 1 = 2 x2 + x + 1 3 ⇒ x2 + 1 − x = 2 x2 + x + 1 3
Dividing numerator and denominator by x,⇒ 3 x + 1 − 3 = 2 x + 1 + 2 x x ⇒ x + 1 = 2 + 3 = 5 x Correct Option: B
x2 − x + 1 = 2 x2 + x + 1 3 ⇒ x2 + 1 − x = 2 x2 + x + 1 3
Dividing numerator and denominator by x,⇒ 3 x + 1 − 3 = 2 x + 1 + 2 x x ⇒ x + 1 = 2 + 3 = 5 x
- If x, y and z are real numbers such that (x– 3)2 + (y – 4)2 + (z – 5)2 = 0 then (x + y + z) is equal to
-
View Hint View Answer Discuss in Forum
(x – 3)2 + (y – 4)2 + (z – 5)2 = 0
⇒ x – 3 = 0, y – 4 = 0 and z – 5 = 0
⇒ x = 3, y = 4 and z = 5
∴ x + y + z = 3 + 4 + 5 = 12Correct Option: D
(x – 3)2 + (y – 4)2 + (z – 5)2 = 0
⇒ x – 3 = 0, y – 4 = 0 and z – 5 = 0
⇒ x = 3, y = 4 and z = 5
∴ x + y + z = 3 + 4 + 5 = 12