Algebra


  1. If   x +
    1
    = √3 , then the value of x3 +
    1
    is equal to
    xx3









  1. View Hint View Answer Discuss in Forum

    x +
    1
    = √3
    x

    ⇒ 
    x +
    1
    3 = (√3)3 = 3√3
    x

    ⇒  x3 +
    1
    + 3 x +
    1
    = 3√3
    x3x

    ⇒  x3 +
    1
    + 3√3 = 3√3
    x3

    ⇒  x3 +
    1
    = 3√3 – 3√3 = 0
    x3

    Correct Option: C

    x +
    1
    = √3
    x

    ⇒ 
    x +
    1
    3 = (√3)3 = 3√3
    x

    ⇒  x3 +
    1
    + 3 x +
    1
    = 3√3
    x3x

    ⇒  x3 +
    1
    + 3√3 = 3√3
    x3

    ⇒  x3 +
    1
    = 3√3 – 3√3 = 0
    x3


  1. If   pq (p + q) = 1, then the value of
    1
    − p3 − q3 is equal to
    p3q3









  1. View Hint View Answer Discuss in Forum

    pq (p + q) = 1

    ⇒  p + q =
    1
    pq

    On cubing both sides,
    (p + q)3 =
    1
    p3q3

    ⇒ p3 + q3 + 3pq (p + q) =
    1
    p3q3

    ⇒ 
    1
    − p3 − q3
    p3q3

    = 3 pq (p + q) = 3 × 1 = 3

    Correct Option: C

    pq (p + q) = 1

    ⇒  p + q =
    1
    pq

    On cubing both sides,
    (p + q)3 =
    1
    p3q3

    ⇒ p3 + q3 + 3pq (p + q) =
    1
    p3q3

    ⇒ 
    1
    − p3 − q3
    p3q3

    = 3 pq (p + q) = 3 × 1 = 3



  1. = x2 + y2 +
    1
    +
    1
    = 4, then the value of x2 + y2 is
    x2y2









  1. View Hint View Answer Discuss in Forum

    x2 + y2 +
    1
    +
    1
    − 4 = 0
    x2y2

    ⇒  x2 +
    1
    − 2 + y2 +
    1
    − 2 = 0
    x2y2

    ⇒ x −
    1
    2 + y −
    1
    2 = 0
    xy

    ⇒  x −
    1
    = 0
    x

    ⇒  x2 − 1 = 0 ⇒ x = 1
    Similarly,
    y = 1
    ∴  x2 + y2 = 1 + 1 = 2

    Correct Option: A

    x2 + y2 +
    1
    +
    1
    − 4 = 0
    x2y2

    ⇒  x2 +
    1
    − 2 + y2 +
    1
    − 2 = 0
    x2y2

    ⇒ x −
    1
    2 + y −
    1
    2 = 0
    xy

    ⇒  x −
    1
    = 0
    x

    ⇒  x2 − 1 = 0 ⇒ x = 1
    Similarly,
    y = 1
    ∴  x2 + y2 = 1 + 1 = 2


  1. If   n = 7 + 4 √3, then the value of n +
    1
    is :
    n









  1. View Hint View Answer Discuss in Forum

    n = 7 + 4√3 = 7 + 2 × 2 × √3
    = 4 + 3 + 2 × 2 × √3
    = (2 + √3
    ∴ √n = 2 + √3

    1
    =
    1
    = 2
    n2 + √3

    =
    1
    ×
    2 - √3
    = 2 - √3
    2 + √32 - √3

    ∴ √n +
    1
    = 2 + √3 + 2 - √3 = 4
    n

    Correct Option: B

    n = 7 + 4√3 = 7 + 2 × 2 × √3
    = 4 + 3 + 2 × 2 × √3
    = (2 + √3
    ∴ √n = 2 + √3

    1
    =
    1
    = 2
    n2 + √3

    =
    1
    ×
    2 - √3
    = 2 - √3
    2 + √32 - √3

    ∴ √n +
    1
    = 2 + √3 + 2 - √3 = 4
    n



  1. If   a + b + c = 0, then the value of
    a2 + b2 + c2
      is
    a2 − bc









  1. View Hint View Answer Discuss in Forum

    a + b + c = 0
    ⇒  b + c = –a
    On squaring both sides,
    ⇒  (b + c)2 = a2
    ⇒  b2 + c2 + 2bc = a2
    ⇒  a2 + b2 + c2 + 2bc = 2a2
    ⇒  a2 + b2 + c2 = 2a2 − 2bc = 2(a2 − bc)

    ∴ 
    a2 + b2 + c2
    =
    2(a2 − bc)
    = 2
    a2 − bca2 − bc

    Correct Option: C

    a + b + c = 0
    ⇒  b + c = –a
    On squaring both sides,
    ⇒  (b + c)2 = a2
    ⇒  b2 + c2 + 2bc = a2
    ⇒  a2 + b2 + c2 + 2bc = 2a2
    ⇒  a2 + b2 + c2 = 2a2 − 2bc = 2(a2 − bc)

    ∴ 
    a2 + b2 + c2
    =
    2(a2 − bc)
    = 2
    a2 − bca2 − bc