Algebra
-
If x + 1 = √3 , then the value of x3 + 1 is equal to x x3
-
View Hint View Answer Discuss in Forum
x + 1 = √3 x ⇒ x + 1 3 = (√3)3 = 3√3 x ⇒ x3 + 1 + 3 x + 1 = 3√3 x3 x ⇒ x3 + 1 + 3√3 = 3√3 x3 ⇒ x3 + 1 = 3√3 – 3√3 = 0 x3 Correct Option: C
x + 1 = √3 x ⇒ x + 1 3 = (√3)3 = 3√3 x ⇒ x3 + 1 + 3 x + 1 = 3√3 x3 x ⇒ x3 + 1 + 3√3 = 3√3 x3 ⇒ x3 + 1 = 3√3 – 3√3 = 0 x3
-
If pq (p + q) = 1, then the value of 1 − p3 − q3 is equal to p3q3
-
View Hint View Answer Discuss in Forum
pq (p + q) = 1
⇒ p + q = 1 pq
On cubing both sides,(p + q)3 = 1 p3q3 ⇒ p3 + q3 + 3pq (p + q) = 1 p3q3 ⇒ 1 − p3 − q3 p3q3
= 3 pq (p + q) = 3 × 1 = 3Correct Option: C
pq (p + q) = 1
⇒ p + q = 1 pq
On cubing both sides,(p + q)3 = 1 p3q3 ⇒ p3 + q3 + 3pq (p + q) = 1 p3q3 ⇒ 1 − p3 − q3 p3q3
= 3 pq (p + q) = 3 × 1 = 3
-
= x2 + y2 + 1 + 1 = 4, then the value of x2 + y2 is x2 y2
-
View Hint View Answer Discuss in Forum
x2 + y2 + 1 + 1 − 4 = 0 x2 y2 ⇒ x2 + 1 − 2 + y2 + 1 − 2 = 0 x2 y2 ⇒ x − 1 2 + y − 1 2 = 0 x y ⇒ x − 1 = 0 x
⇒ x2 − 1 = 0 ⇒ x = 1
Similarly,
y = 1
∴ x2 + y2 = 1 + 1 = 2Correct Option: A
x2 + y2 + 1 + 1 − 4 = 0 x2 y2 ⇒ x2 + 1 − 2 + y2 + 1 − 2 = 0 x2 y2 ⇒ x − 1 2 + y − 1 2 = 0 x y ⇒ x − 1 = 0 x
⇒ x2 − 1 = 0 ⇒ x = 1
Similarly,
y = 1
∴ x2 + y2 = 1 + 1 = 2
-
If n = 7 + 4 √3, then the value of √n + 1 is : √n
-
View Hint View Answer Discuss in Forum
n = 7 + 4√3 = 7 + 2 × 2 × √3
= 4 + 3 + 2 × 2 × √3
= (2 + √3)²
∴ √n = 2 + √3∴ 1 = 1 = 2 √n 2 + √3 = 1 × 2 - √3 = 2 - √3 2 + √3 2 - √3 ∴ √n + 1 = 2 + √3 + 2 - √3 = 4 √n Correct Option: B
n = 7 + 4√3 = 7 + 2 × 2 × √3
= 4 + 3 + 2 × 2 × √3
= (2 + √3)²
∴ √n = 2 + √3∴ 1 = 1 = 2 √n 2 + √3 = 1 × 2 - √3 = 2 - √3 2 + √3 2 - √3 ∴ √n + 1 = 2 + √3 + 2 - √3 = 4 √n
-
If a + b + c = 0, then the value of a2 + b2 + c2 is a2 − bc
-
View Hint View Answer Discuss in Forum
a + b + c = 0
⇒ b + c = –a
On squaring both sides,
⇒ (b + c)2 = a2
⇒ b2 + c2 + 2bc = a2
⇒ a2 + b2 + c2 + 2bc = 2a2
⇒ a2 + b2 + c2 = 2a2 − 2bc = 2(a2 − bc)∴ a2 + b2 + c2 = 2(a2 − bc) = 2 a2 − bc a2 − bc Correct Option: C
a + b + c = 0
⇒ b + c = –a
On squaring both sides,
⇒ (b + c)2 = a2
⇒ b2 + c2 + 2bc = a2
⇒ a2 + b2 + c2 + 2bc = 2a2
⇒ a2 + b2 + c2 = 2a2 − 2bc = 2(a2 − bc)∴ a2 + b2 + c2 = 2(a2 − bc) = 2 a2 − bc a2 − bc