Algebra


  1. If   2x – 3(4 – 2x) < 4x – 5 < 4x +
    2x
    ,
    3









  1. View Hint View Answer Discuss in Forum

    2x – 3(4 – 2x) < 4x – 5 < 4x +
    2x
    3

    ⇒  2x – 12 + 6x < 4x – 5 <
    12x + 2x
    3

    ⇒  8x – 12 < 4x – 5 <
    14x
    3

    ⇒  24x – 36 < 12x – 15 < 14x
    When x = 0,
    –36 < –15 < 0

    Correct Option: C

    2x – 3(4 – 2x) < 4x – 5 < 4x +
    2x
    3

    ⇒  2x – 12 + 6x < 4x – 5 <
    12x + 2x
    3

    ⇒  8x – 12 < 4x – 5 <
    14x
    3

    ⇒  24x – 36 < 12x – 15 < 14x
    When x = 0,
    –36 < –15 < 0


  1. Which of the following equations has equal roots?









  1. View Hint View Answer Discuss in Forum

    The roots of quadratic equation ax2+ bx + c = 0 will be equal
    if b2 – 4ac = 0
    Option (1),
    3x2 – 6x + 2 = 0
    a = 3, b = –6, c = 2
    ∴  b2 – 4ac = (–6)2 – 4 × 3 × 2
    = 36 – 24 = 12 ≠ 0
    Option (2),
    3x2 – 6x + 3 = 0
    a = 3, b = –6, c = 3
    ∴  b2 – 4ac = (–6)2 – 4 × 3 × 3
    = 36 – 36 = 0
    Option (3),
    x2 – 8x + 8 = 0
    ∴  b2 – 4ac = (–8)2 – 4 × 8
    = 64 – 32 = 32 ≠ 0
    Option (4),
    4x2 – 8x + 2 = 0
    ∴  b2 – 4ac = (–8)2 – 4 × 4 × 2
    = 64 – 32
    = 32 ≠ 0

    Correct Option: B

    The roots of quadratic equation ax2+ bx + c = 0 will be equal
    if b2 – 4ac = 0
    Option (1),
    3x2 – 6x + 2 = 0
    a = 3, b = –6, c = 2
    ∴  b2 – 4ac = (–6)2 – 4 × 3 × 2
    = 36 – 24 = 12 ≠ 0
    Option (2),
    3x2 – 6x + 3 = 0
    a = 3, b = –6, c = 3
    ∴  b2 – 4ac = (–6)2 – 4 × 3 × 3
    = 36 – 36 = 0
    Option (3),
    x2 – 8x + 8 = 0
    ∴  b2 – 4ac = (–8)2 – 4 × 8
    = 64 – 32 = 32 ≠ 0
    Option (4),
    4x2 – 8x + 2 = 0
    ∴  b2 – 4ac = (–8)2 – 4 × 4 × 2
    = 64 – 32
    = 32 ≠ 0



  1. If 5x – 40 = 3x, then the numerical value of (2x – 11) is









  1. View Hint View Answer Discuss in Forum

    5x – 40 = 3x
    ⇒  5x – 3x = 40

    ⇒  2x = 40 ⇒ x =
    40
    = 20
    2

    ∴  2x – 11 = 2 × 20 – 11
    = 40 – 11 = 29

    Correct Option: A

    5x – 40 = 3x
    ⇒  5x – 3x = 40

    ⇒  2x = 40 ⇒ x =
    40
    = 20
    2

    ∴  2x – 11 = 2 × 20 – 11
    = 40 – 11 = 29


  1. If 4 (2x + 3) > 5 – x and 5x –3 (2x – 7) > 3x – 1, then x can take which of the following values?









  1. View Hint View Answer Discuss in Forum

    4 (2x + 3) > 5 – x
    ⇒  8x + 12 > 5 – x
    ⇒  8x + x > 5 – 12
    ⇒  9x > –7

    ⇒  x >
    –7
    9

    Again,
    5x – 3 (2x – 7) > 3x – 1
    ⇒  5x – 6x + 21 > 3x – 1
    ⇒  –x + 21 > 3x – 1
    ⇒  –x – 3x > – 21 – 1
    ⇒  –4x > –22
    ⇒  4x < 22
    ⇒  x <
    22
    i.e., x < 5.5
    4

    ∴  Required value of x = 5

    Correct Option: C

    4 (2x + 3) > 5 – x
    ⇒  8x + 12 > 5 – x
    ⇒  8x + x > 5 – 12
    ⇒  9x > –7

    ⇒  x >
    –7
    9

    Again,
    5x – 3 (2x – 7) > 3x – 1
    ⇒  5x – 6x + 21 > 3x – 1
    ⇒  –x + 21 > 3x – 1
    ⇒  –x – 3x > – 21 – 1
    ⇒  –4x > –22
    ⇒  4x < 22
    ⇒  x <
    22
    i.e., x < 5.5
    4

    ∴  Required value of x = 5



  1. What should be added to 8 (3x – 4y) to obtain (18x – 18y) ?









  1. View Hint View Answer Discuss in Forum

    Required answer
    = (18x – 18y) – 8 (3x – 4y)
    = 18x – 18y – 24x + 32y
    = 14y – 6x

    Correct Option: C

    Required answer
    = (18x – 18y) – 8 (3x – 4y)
    = 18x – 18y – 24x + 32y
    = 14y – 6x