Algebra


  1. If x +
    1
    = 2 , then the value of x7 +
    1
    is
    xx5










  1. View Hint View Answer Discuss in Forum

    x +
    1
    = 2
    x

    ⇒ x2 + 1 = 2x
    ⇒ x2 - 2x + 1 = 0
    ⇒ (x - 1)2 = 0 ⇒ x = 1
    ∴ x7 +
    1
    = 1 + 1 = 2
    x5

    Second Method :
    Using Rule 16,
    Here, x +
    1
    = 2
    x

    ∴ x7 +
    1
    = 2
    x5

    Correct Option: B

    x +
    1
    = 2
    x

    ⇒ x2 + 1 = 2x
    ⇒ x2 - 2x + 1 = 0
    ⇒ (x - 1)2 = 0 ⇒ x = 1
    ∴ x7 +
    1
    = 1 + 1 = 2
    x5

    Second Method :
    Using Rule 16,
    Here, x +
    1
    = 2
    x

    ∴ x7 +
    1
    = 2
    x5


  1. If p4 = 119 -
    1
    , then the value of p3 -
    1
    is
    p4p3










  1. View Hint View Answer Discuss in Forum

    p4 = 119 -
    1
    p4

    p4 +
    1
    = 119
    p4

    p2 +
    1
    2 - 2 = 119
    p2

    p2 +
    1
    2 = 119 + 2 = 121
    p2

    p2 +
    1
    2 = (11)2
    p2

    ⇒ p2 +
    1
    = 11
    p2

    Again ,
    p -
    1
    2 + 2 = 11
    p

    p -
    1
    2 = 11 - 2 = 9
    p

    p2 +
    1
    = √9 = ±3
    p2

    On cubing both sides ,
    p -
    1
    3 = ±27
    p

    ⇒ p3 -
    1
    - 3 × p ×
    1
    p -
    1
    = ±27
    p3pp

    ⇒ p3 -
    1
    - 3 × (±3) = ±27
    p3

    ⇒ p3 -
    1
    = ±27 ± 9 = ±36
    p3

    Correct Option: C

    p4 = 119 -
    1
    p4

    p4 +
    1
    = 119
    p4

    p2 +
    1
    2 - 2 = 119
    p2

    p2 +
    1
    2 = 119 + 2 = 121
    p2

    p2 +
    1
    2 = (11)2
    p2

    ⇒ p2 +
    1
    = 11
    p2

    Again ,
    p -
    1
    2 + 2 = 11
    p

    p -
    1
    2 = 11 - 2 = 9
    p

    p2 +
    1
    = √9 = ±3
    p2

    On cubing both sides ,
    p -
    1
    3 = ±27
    p

    ⇒ p3 -
    1
    - 3 × p ×
    1
    p -
    1
    = ±27
    p3pp

    ⇒ p3 -
    1
    - 3 × (±3) = ±27
    p3

    ⇒ p3 -
    1
    = ±27 ± 9 = ±36
    p3



  1. If x + y + z = 6, then the value of (x - 1)3 + (y - 2)3 + (z - 3)3 is









  1. View Hint View Answer Discuss in Forum

    Using Rule 21,
    If. a + b + c = 0, then a3 + b3 + c3 = 3abc
    Here, x – 1 + y – 2 + z – 3 = x + y + z – 6
    = 6 – 6 = 0
    ∴ (x - 1)3 + (y - 2)3 + (z - 3)3 = 3(x – 1 )(y – 2 )(z – 3 )

    Correct Option: A

    Using Rule 21,
    If. a + b + c = 0, then a3 + b3 + c3 = 3abc
    Here, x – 1 + y – 2 + z – 3 = x + y + z – 6
    = 6 – 6 = 0
    ∴ (x - 1)3 + (y - 2)3 + (z - 3)3 = 3(x – 1 )(y – 2 )(z – 3 )


  1. If a = 2 + √3 , then the value of
    a6 + a4 + a2 + 1
    is
    a3










  1. View Hint View Answer Discuss in Forum

    a = 2 + √3

    1
    =
    1
    a2 + √3

    1
    =
    ( 2 - √3 )
    a( 2 + √3 )( 2 - √3 )

    1
    =
    2 - √3
    = 2 - √3
    a4 - 3

    ∴ a +
    1
    = 2 + √3 + 2 - √3 = 4
    a

    ∴ Expression =
    a6 + a4 + a2 + 1
    a3

    Expression = a3 + a +
    1
    +
    1
    aa3

    Expression = a3 +
    1
    + a +
    1
    a3a

    Expression = a +
    1
    3 - 3a +
    1
    + a +
    1
    aaa

    Expression = a +
    1
    3 - 2a +
    1
    aa

    Expression = (4)3 – 2 × 4 = 64 – 8 = 56

    Correct Option: D

    a = 2 + √3

    1
    =
    1
    a2 + √3

    1
    =
    ( 2 - √3 )
    a( 2 + √3 )( 2 - √3 )

    1
    =
    2 - √3
    = 2 - √3
    a4 - 3

    ∴ a +
    1
    = 2 + √3 + 2 - √3 = 4
    a

    ∴ Expression =
    a6 + a4 + a2 + 1
    a3

    Expression = a3 + a +
    1
    +
    1
    aa3

    Expression = a3 +
    1
    + a +
    1
    a3a

    Expression = a +
    1
    3 - 3a +
    1
    + a +
    1
    aaa

    Expression = a +
    1
    3 - 2a +
    1
    aa

    Expression = (4)3 – 2 × 4 = 64 – 8 = 56



  1. If a = 2 + √3 , then the value of
    a6 + a4 + a2 + 1
    is
    a3










  1. View Hint View Answer Discuss in Forum

    a = 2 + √3

    1
    =
    1
    a2 + √3

    1
    =
    ( 2 - √3 )
    a( 2 + √3 )( 2 - √3 )

    1
    =
    2 - √3
    = 2 - √3
    a4 - 3

    ∴ a +
    1
    = 2 + √3 + 2 - √3 = 4
    a

    ∴ Expression =
    a6 + a4 + a2 + 1
    a3

    Expression = a3 + a +
    1
    +
    1
    aa3

    Expression = a3 +
    1
    + a +
    1
    a3a

    Expression = a +
    1
    3 - 3a +
    1
    + a +
    1
    aaa

    Expression = a +
    1
    3 - 2a +
    1
    aa

    Expression = (4)3 – 2 × 4 = 64 – 8 = 56

    Correct Option: D

    a = 2 + √3

    1
    =
    1
    a2 + √3

    1
    =
    ( 2 - √3 )
    a( 2 + √3 )( 2 - √3 )

    1
    =
    2 - √3
    = 2 - √3
    a4 - 3

    ∴ a +
    1
    = 2 + √3 + 2 - √3 = 4
    a

    ∴ Expression =
    a6 + a4 + a2 + 1
    a3

    Expression = a3 + a +
    1
    +
    1
    aa3

    Expression = a3 +
    1
    + a +
    1
    a3a

    Expression = a +
    1
    3 - 3a +
    1
    + a +
    1
    aaa

    Expression = a +
    1
    3 - 2a +
    1
    aa

    Expression = (4)3 – 2 × 4 = 64 – 8 = 56