Algebra


  1. If x2 + ax + b is a perfect square, then which one of the following relations between a and b is
    true ?









  1. View Hint View Answer Discuss in Forum

    ax2 + bx + c will be a perfect square, if b2 = 4ac
    ∴  x2 + ax + b will be a perfect square if a2 = 4b
    Look : x2 + 2√b x + b
    = x2 + 2.x.√b + (√b)2
    = (x + √b)2

    Correct Option: B

    ax2 + bx + c will be a perfect square, if b2 = 4ac
    ∴  x2 + ax + b will be a perfect square if a2 = 4b
    Look : x2 + 2√b x + b
    = x2 + 2.x.√b + (√b)2
    = (x + √b)2


  1. If   x = √3
    1
    and y = √3 +
    1
    , then the value of
    x2
    +
    y2
    is
    33yx









  1. View Hint View Answer Discuss in Forum

    x = √3
    1
    3

    y = √3 +
    1
    3

    x + y = √3
    1
    + √3 +
    1
    = 2√3
    33

    xy = 3
    1
    3 +
    1
    33

    = 3 –
    1
    =
    9 − 1
    =
    8
    333

    ∴ 
    x2
    +
    y2
    =
    x3 + y3
    yxxy

    =
    (x + y)3 − 3xy(x + y)
    xy

    = (2√3)3 − 3 ×
    8
    (2√3)
    3
    8
    3

    =
    24√3 − 16√3
    8/3

    =
    8√3 × 3
    = 3√3
    8

    Correct Option: B

    x = √3
    1
    3

    y = √3 +
    1
    3

    x + y = √3
    1
    + √3 +
    1
    = 2√3
    33

    xy = 3
    1
    3 +
    1
    33

    = 3 –
    1
    =
    9 − 1
    =
    8
    333

    ∴ 
    x2
    +
    y2
    =
    x3 + y3
    yxxy

    =
    (x + y)3 − 3xy(x + y)
    xy

    = (2√3)3 − 3 ×
    8
    (2√3)
    3
    8
    3

    =
    24√3 − 16√3
    8/3

    =
    8√3 × 3
    = 3√3
    8



  1. If a + b = 12, ab = 22, then (a2 + b2) is equal to









  1. View Hint View Answer Discuss in Forum

    a + b = 12, ab = 22
    ∴  a2 + b2 = (a + b)2 – 2ab
    = (12)2 – 2 × 22
    = 144 – 44 = 100

    Correct Option: D

    a + b = 12, ab = 22
    ∴  a2 + b2 = (a + b)2 – 2ab
    = (12)2 – 2 × 22
    = 144 – 44 = 100


  1. If  
    x
    =
    4
    , then the value of
    4
    +
    2y − x
    is
    y572y + x









  1. View Hint View Answer Discuss in Forum

    x
    =
    4
      (Given)
    y5

    Expression =
    4
    +
    2y − x
    72y + x

    = (4/7) +
    2y
    x
    yy
    2y
    +
    x
    yy

    = (4/7) + 2 −
    x
    y
    2 +
    x
    y

    = (4/7) + 2 −
    4
    5
    2 +
    4
    5

    = (4/7) +
    10 − 4
    5
    10 + 4
    5

    =
    4
    +
    16
    714

    =
    4
    +
    3
    =
    7
    = 1
    777

    Correct Option: C

    x
    =
    4
      (Given)
    y5

    Expression =
    4
    +
    2y − x
    72y + x

    = (4/7) +
    2y
    x
    yy
    2y
    +
    x
    yy

    = (4/7) + 2 −
    x
    y
    2 +
    x
    y

    = (4/7) + 2 −
    4
    5
    2 +
    4
    5

    = (4/7) +
    10 − 4
    5
    10 + 4
    5

    =
    4
    +
    16
    714

    =
    4
    +
    3
    =
    7
    = 1
    777



  1. If   a +
    1
    = b +
    1
    = c +
    1
    (a ≠ b ≠ c), then the value of abc is
    bca









  1. View Hint View Answer Discuss in Forum

    a +
    1
    = b +
    1
    = c +
    1
    = ± 1
    bca

    ⇒  a +
    1
    = 1
    b

    ⇒  ab + 1 = b ⇒ ab = b – 1
    b +
    1
    = 1, ⇒
    1
    = 1 – b
    cc

    ⇒  c =
    1
    1 – b

    ∴  abc =
    b – 1
    = – 1
    1 – b

    Again,   a +
    1
    = – 1
    b

    ⇒  ab + 1 = – b ⇒ ab = – b – 1
    b +
    1
    = – 1  ⇒
    1
    = = – 1 – b
    cc

    ⇒  c =
    1
    – 1 – b

    ∴  abc = 1
    ∴  abc = ± 1

    Correct Option: A

    a +
    1
    = b +
    1
    = c +
    1
    = ± 1
    bca

    ⇒  a +
    1
    = 1
    b

    ⇒  ab + 1 = b ⇒ ab = b – 1
    b +
    1
    = 1, ⇒
    1
    = 1 – b
    cc

    ⇒  c =
    1
    1 – b

    ∴  abc =
    b – 1
    = – 1
    1 – b

    Again,   a +
    1
    = – 1
    b

    ⇒  ab + 1 = – b ⇒ ab = – b – 1
    b +
    1
    = – 1  ⇒
    1
    = = – 1 – b
    cc

    ⇒  c =
    1
    – 1 – b

    ∴  abc = 1
    ∴  abc = ± 1