Algebra


  1. If a, b, c be all positive integers, then the least positive value of a3 + b3 + c3 – 3abc is









  1. View Hint View Answer Discuss in Forum

    a3 + b3 + c3 – 3abc will be minimum if a = b = 1, c = 2
    ∴ Least value = 1 + 1 + 8 – 3 × 1
    × 1 × 2 = 10 – 6 = 4

    Correct Option: C

    a3 + b3 + c3 – 3abc will be minimum if a = b = 1, c = 2
    ∴ Least value = 1 + 1 + 8 – 3 × 1
    × 1 × 2 = 10 – 6 = 4


  1. When f(x) = 12x3 – 13x2 – 5x + 7 is divided by (3x + 2), then the remainder is









  1. View Hint View Answer Discuss in Forum

    By remainder theorem,

    Remainder = f
    -2
    3

    ∵ f(x) = 12x3 – 13x2 – 5x + 7
    ∴ f
    -2
    = 12
    -2
    3 - 13
    -2
    2 - 5
    -2
    + 7
    3333

    Remainder = -
    12 × 8
    -
    13 × 4
    +
    10
    + 7
    2793

    Remainder = -
    32
    -
    52
    +
    10
    + 7
    993

    Remainder =
    -32 - 52 + 30 + 63
    =
    9
    = 1
    99

    Second Method :

    Correct Option: D

    By remainder theorem,

    Remainder = f
    -2
    3

    ∵ f(x) = 12x3 – 13x2 – 5x + 7
    ∴ f
    -2
    = 12
    -2
    3 - 13
    -2
    2 - 5
    -2
    + 7
    3333

    Remainder = -
    12 × 8
    -
    13 × 4
    +
    10
    + 7
    2793

    Remainder = -
    32
    -
    52
    +
    10
    + 7
    993

    Remainder =
    -32 - 52 + 30 + 63
    =
    9
    = 1
    99

    Second Method :



  1. If ab + bc + ca = 0, then the value of
    1
    +
    1
    +
    1
    is
    ( a² - bc )( b² - ac )( c² - ab )










  1. View Hint View Answer Discuss in Forum

    ab + bc + ca = 0
    ⇒ ab + ca = – bc
    ∴ a2 – bc = a2 + ab + ca
    ⇒ a2 – bc = a (a + b + c)
    Similarly,
    b2 – ac = b (a + b + c)
    c2 – ab = c (a + b + c)

    ∴ Expression =
    1
    +
    1
    +
    1
    ( a² - bc )( b² - ac )( c² - ab )

    Expression =
    1
    +
    1
    +
    1
    a (a + b + c)b (a + b + c)c (a + b + c)

    Expression =
    bc + ac + ab
    = 0    { ∴ ab + bc + ca = 0 }
    abc (a + b + c)

    Correct Option: C

    ab + bc + ca = 0
    ⇒ ab + ca = – bc
    ∴ a2 – bc = a2 + ab + ca
    ⇒ a2 – bc = a (a + b + c)
    Similarly,
    b2 – ac = b (a + b + c)
    c2 – ab = c (a + b + c)

    ∴ Expression =
    1
    +
    1
    +
    1
    ( a² - bc )( b² - ac )( c² - ab )

    Expression =
    1
    +
    1
    +
    1
    a (a + b + c)b (a + b + c)c (a + b + c)

    Expression =
    bc + ac + ab
    = 0    { ∴ ab + bc + ca = 0 }
    abc (a + b + c)


  1. If the equation 2x2 – 7x + 12 = 0 has two roots α and β, then the value of
    α
    +
    β
    is :
    βα










  1. View Hint View Answer Discuss in Forum

    2x2 – 7x + 12 = 0

    ∴ α + β =
    7
    2

    αβ =
    12
    = 6
    2

    [In equation ax2 + bx + c = 0 ]
    ∴ α + β =
    -b
      and αβ =
    c
    aa

    α
    +
    β
    =
    α² + β²
    βααβ

    α
    +
    β
    =
    ( α + β )² - 2αβ
    βααβ

    α
    +
    β
    =
    ( 7 / 2)2 - 2 × 6
    βα6

    α
    +
    β
    =
    ( 49 / 4) - 12
    βα6

    α
    +
    β
    =
    49 - 48
    =
    1
    βα2424

    Correct Option: B

    2x2 – 7x + 12 = 0

    ∴ α + β =
    7
    2

    αβ =
    12
    = 6
    2

    [In equation ax2 + bx + c = 0 ]
    ∴ α + β =
    -b
      and αβ =
    c
    aa

    α
    +
    β
    =
    α² + β²
    βααβ

    α
    +
    β
    =
    ( α + β )² - 2αβ
    βααβ

    α
    +
    β
    =
    ( 7 / 2)2 - 2 × 6
    βα6

    α
    +
    β
    =
    ( 49 / 4) - 12
    βα6

    α
    +
    β
    =
    49 - 48
    =
    1
    βα2424