Algebra
- If a, b, c be all positive integers, then the least positive value of a3 + b3 + c3 – 3abc is
-
View Hint View Answer Discuss in Forum
a3 + b3 + c3 – 3abc will be minimum if a = b = 1, c = 2
∴ Least value = 1 + 1 + 8 – 3 × 1
× 1 × 2 = 10 – 6 = 4Correct Option: C
a3 + b3 + c3 – 3abc will be minimum if a = b = 1, c = 2
∴ Least value = 1 + 1 + 8 – 3 × 1
× 1 × 2 = 10 – 6 = 4
- When f(x) = 12x3 – 13x2 – 5x + 7 is divided by (3x + 2), then the remainder is
-
View Hint View Answer Discuss in Forum
By remainder theorem,
Remainder = f -2 3
∵ f(x) = 12x3 – 13x2 – 5x + 7∴ f -2 = 12 -2 3 - 13 -2 2 - 5 -2 + 7 3 3 3 3 Remainder = - 12 × 8 - 13 × 4 + 10 + 7 27 9 3
Remainder = - 32 - 52 + 10 + 7 9 9 3
Remainder = -32 - 52 + 30 + 63 = 9 = 1 9 9
Second Method :
Correct Option: D
By remainder theorem,
Remainder = f -2 3
∵ f(x) = 12x3 – 13x2 – 5x + 7∴ f -2 = 12 -2 3 - 13 -2 2 - 5 -2 + 7 3 3 3 3 Remainder = - 12 × 8 - 13 × 4 + 10 + 7 27 9 3
Remainder = - 32 - 52 + 10 + 7 9 9 3
Remainder = -32 - 52 + 30 + 63 = 9 = 1 9 9
Second Method :
-
If ab + bc + ca = 0, then the value of 1 + 1 + 1 is ( a² - bc ) ( b² - ac ) ( c² - ab )
-
View Hint View Answer Discuss in Forum
ab + bc + ca = 0
⇒ ab + ca = – bc
∴ a2 – bc = a2 + ab + ca
⇒ a2 – bc = a (a + b + c)
Similarly,
b2 – ac = b (a + b + c)
c2 – ab = c (a + b + c)∴ Expression = 1 + 1 + 1 ( a² - bc ) ( b² - ac ) ( c² - ab ) Expression = 1 + 1 + 1 a (a + b + c) b (a + b + c) c (a + b + c) Expression = bc + ac + ab = 0 { ∴ ab + bc + ca = 0 } abc (a + b + c)
Correct Option: C
ab + bc + ca = 0
⇒ ab + ca = – bc
∴ a2 – bc = a2 + ab + ca
⇒ a2 – bc = a (a + b + c)
Similarly,
b2 – ac = b (a + b + c)
c2 – ab = c (a + b + c)∴ Expression = 1 + 1 + 1 ( a² - bc ) ( b² - ac ) ( c² - ab ) Expression = 1 + 1 + 1 a (a + b + c) b (a + b + c) c (a + b + c) Expression = bc + ac + ab = 0 { ∴ ab + bc + ca = 0 } abc (a + b + c)
-
If the equation 2x2 – 7x + 12 = 0 has two roots α and β, then the value of α + β is : β α
-
View Hint View Answer Discuss in Forum
2x2 – 7x + 12 = 0
∴ α + β = 7 2 αβ = 12 = 6 2
[In equation ax2 + bx + c = 0 ]∴ α + β = -b and αβ = c a a ∴ α + β = α² + β² β α αβ ⇒ α + β = ( α + β )² - 2αβ β α αβ ⇒ α + β = ( 7 / 2)2 - 2 × 6 β α 6 ⇒ α + β = ( 49 / 4) - 12 β α 6 ⇒ α + β = 49 - 48 = 1 β α 24 24 Correct Option: B
2x2 – 7x + 12 = 0
∴ α + β = 7 2 αβ = 12 = 6 2
[In equation ax2 + bx + c = 0 ]∴ α + β = -b and αβ = c a a ∴ α + β = α² + β² β α αβ ⇒ α + β = ( α + β )² - 2αβ β α αβ ⇒ α + β = ( 7 / 2)2 - 2 × 6 β α 6 ⇒ α + β = ( 49 / 4) - 12 β α 6 ⇒ α + β = 49 - 48 = 1 β α 24 24