-
If ab + bc + ca = 0, then the value of 1 + 1 + 1 is ( a² - bc ) ( b² - ac ) ( c² - ab )
-
- 2
- –1
- 0
- 1
- 2
Correct Option: C
ab + bc + ca = 0
⇒ ab + ca = – bc
∴ a2 – bc = a2 + ab + ca
⇒ a2 – bc = a (a + b + c)
Similarly,
b2 – ac = b (a + b + c)
c2 – ab = c (a + b + c)
∴ Expression = | + | + | ||||
( a² - bc ) | ( b² - ac ) | ( c² - ab ) |
Expression = | + | + | ||||
a (a + b + c) | b (a + b + c) | c (a + b + c) |
Expression = | = 0 { ∴ ab + bc + ca = 0 } | |
abc (a + b + c) |