Algebra


  1. If 22x – y = 16 and 2x + y = 32, the value of xy is









  1. View Hint View Answer Discuss in Forum

    22x – y = 16 = 24
    ⇒  2x – y = 4 ............... (i)
    2x + y = 32 = 25
    ⇒  x + y = 5 ............... (ii)
    On adding equations (i) and (ii),
    3x = 9 ⇒ x = 3
    From equation (ii),
    y = 5 – x = 5 – 3 = 2
    ∴  xy = 3 × 2 = 6

    Correct Option: C

    22x – y = 16 = 24
    ⇒  2x – y = 4 ............... (i)
    2x + y = 32 = 25
    ⇒  x + y = 5 ............... (ii)
    On adding equations (i) and (ii),
    3x = 9 ⇒ x = 3
    From equation (ii),
    y = 5 – x = 5 – 3 = 2
    ∴  xy = 3 × 2 = 6


  1. The value of the expression x4 – 17x3 + 17x2 – 17x + 17 at x = 16 is









  1. View Hint View Answer Discuss in Forum

    x4 – 17x3 + 17x2 – 17x + 17
    = x4 – 16x3 + 16x2 – 16x – x3 + x2 – x + 17
    When x = 16,
    Expression = 164 – 164 + 163 – 162 – 163 + 162 – 16 + 17 = 1

    Correct Option: B

    x4 – 17x3 + 17x2 – 17x + 17
    = x4 – 16x3 + 16x2 – 16x – x3 + x2 – x + 17
    When x = 16,
    Expression = 164 – 164 + 163 – 162 – 163 + 162 – 16 + 17 = 1



  1. If then x equals









  1. View Hint View Answer Discuss in Forum


    Squaring both sides,

    1 −
    x3
    =
    9
    10025

    ⇒ 
    x3
    = 1 −
    9
    =
    25 − 9
    =
    16
    100252525

    ⇒  x3 =
    16
    × 100 = 64
    25

    ∴ 364 = 34 × 4 × 4 = 4

    Correct Option: B


    Squaring both sides,

    1 −
    x3
    =
    9
    10025

    ⇒ 
    x3
    = 1 −
    9
    =
    25 − 9
    =
    16
    100252525

    ⇒  x3 =
    16
    × 100 = 64
    25

    ∴ 364 = 34 × 4 × 4 = 4


  1. If  
    a
    =
    c
    =
    e
    = 3,then
    2a2 + 3c2 +4e2
      = ?
    bdf2b2 + 3d2 + 4f2









  1. View Hint View Answer Discuss in Forum

    a
    =
    c
    =
    e
    = 3
    bdf

    ⇒  a = 3b ; c = 3d ; e = 3f
    ∴ 
    2a2 + 3c2 +4e2
    2b2 + 3d2 + 4f2

    =
    2 × 9b2 + 3 × 9d2 + 4 × 9f2
    2b2 + 3d2 + 4f2

    =
    9(2b2 + 3d2 +4f2)
    = 9
    2b2 + 3d2 + 4f2

    Correct Option: D

    a
    =
    c
    =
    e
    = 3
    bdf

    ⇒  a = 3b ; c = 3d ; e = 3f
    ∴ 
    2a2 + 3c2 +4e2
    2b2 + 3d2 + 4f2

    =
    2 × 9b2 + 3 × 9d2 + 4 × 9f2
    2b2 + 3d2 + 4f2

    =
    9(2b2 + 3d2 +4f2)
    = 9
    2b2 + 3d2 + 4f2



  1. If a2x + 2 = 1, where a is a positive real number other than 1, then x is equal to









  1. View Hint View Answer Discuss in Forum

    We know that a° = 1
    ∴  a2x + 2 = 1 = a°
    ⇒  2x +2 = 0

    ⇒  x =
    − 2
    = −1
    2

    Correct Option: B

    We know that a° = 1
    ∴  a2x + 2 = 1 = a°
    ⇒  2x +2 = 0

    ⇒  x =
    − 2
    = −1
    2