Elementary Algebra


  1. The line passing through the points (– 2, 8) and (5, 7)









  1. View Hint View Answer Discuss in Forum

    As indicated in the graph, the line passing through the points cuts Y-axis only.


    Correct Option: C

    As indicated in the graph, the line passing through the points cuts Y-axis only.



  1. Let a = √6 - √5, b = √5 - 2, c = 2 - √3 Then point out the correct alternative among the four alternatives given below.









  1. View Hint View Answer Discuss in Forum

    We know that , √6 = 2.44, √5 = 2.23, √3 = 1.73
    a = √6 - √5 = 2.44 - 2.23 = 0.21
    b = √5 - 2 = 2.23 - 2 = 0.23

    Correct Option: A

    We know that , √6 = 2.44, √5 = 2.23, √3 = 1.73
    a = √6 - √5 = 2.44 - 2.23 = 0.21
    b = √5 - 2 = 2.23 - 2 = 0.23
    c = 2 - √3 = 2 - 1.73 = 0.27



  1. If the difference of two numbers is 3 and the difference of their squares is 39; then the larger number is:









  1. View Hint View Answer Discuss in Forum

    Let the numbers are p and q.
    p – q = 3 … (1)
    p2 – q2 = 39
    (p – q) (p + q) = 39 ⇒ x + y = 13 … (2)
    Adding eqn (1) and (2)
    p + q + p – q = 16 ⇒ p = 8

    Correct Option: D

    Let the numbers are p and q.
    p – q = 3 … (1)
    p2 – q2 = 39
    (p – q) (p + q) = 39 ⇒ x + y = 13 … (2)
    Adding eqn (1) and (2)
    p + q + p – q = 16 ⇒ p = 8
    ∴ q = 3
    Hence, 8 is the larger number.


  1. If a2 + b2 + c2 = 2 (a – b – c) – 3, then the value of 2a – 3b + 4c is









  1. View Hint View Answer Discuss in Forum

    Given that :- a2 + b2 + c2 = 2 (a – b – c) – 3
    ⇒ a2 + b2 + c2 - 2 (a – b – c) + 3 = 0
    ⇒ a2 + b2 + c2 - 2a + 2b + 2c + 3 = 0
    ⇒ ( a2 + 1 - 2a ) + ( b2 + 1 + 2b ) + ( c2 + 1 + 2c ) = 0
    ⇒ ( a - 1 )2 + ( b + 1 )2 + ( c + 1 )2 = 0
    This is possible when ( a - 1 )2 = 0, ( b + 1 )2 = 0, and ( c + 1 )2 = 0
    ⇒ a = 1, b = –1, c = –1

    Correct Option: A

    Given that :- a2 + b2 + c2 = 2 (a – b – c) – 3
    ⇒ a2 + b2 + c2 - 2 (a – b – c) + 3 = 0
    ⇒ a2 + b2 + c2 - 2a + 2b + 2c + 3 = 0
    ⇒ ( a2 + 1 - 2a ) + ( b2 + 1 + 2b ) + ( c2 + 1 + 2c ) = 0
    ⇒ ( a - 1 )2 + ( b + 1 )2 + ( c + 1 )2 = 0
    This is possible when ( a - 1 )2 = 0, ( b + 1 )2 = 0, and ( c + 1 )2 = 0
    ⇒ a = 1, b = –1, c = –1
    Thus, 2a – 3b + 4c = 2 (1) – 3 (–1) + 4 (–1)
    2a – 3b + 4c = 2 + 3 – 4 = 1.



  1. If a, b, c are real and a3 + b3 + c3 = 3abc and a + b + c ≠ 0 , then the relation between a, b, c will be









  1. View Hint View Answer Discuss in Forum

    Given that :-
    Now ,a3 + b3 + c3 = 3abc
    ( a+b+c )( a2 + b2 + c2 - ab - bc - ca ) + 3abc = 3abc
    ( a+b+c )( a2 + b2 + c2 - ab - bc - ca ) = 0
    ∴ a² + b² + c² - ab - bc - ca = 0 or a + b + c ≠ 0

    Correct Option: C

    Given that :-
    Now ,a3 + b3 + c3 = 3abc
    ( a+b+c )( a2 + b2 + c2 - ab - bc - ca ) + 3abc = 3abc
    ( a+b+c )( a2 + b2 + c2 - ab - bc - ca ) = 0
    ∴ a² + b² + c² - ab - bc - ca = 0 or a + b + c ≠ 0
    Where ,
    a = b = c