Algebra
-
If a = 25 , then the value of a2 − b2 is b 6 a2 + b2
-
View Hint View Answer Discuss in Forum
a = 25 b 6 ⇒ a2 = 252 b2 62 = 625 36
By componendo and dividendo,a2 − b2 = 625 − 36 a2 + b2 625 + 36 = 589 661 Correct Option: A
a = 25 b 6 ⇒ a2 = 252 b2 62 = 625 36
By componendo and dividendo,a2 − b2 = 625 − 36 a2 + b2 625 + 36 = 589 661
-
If x + y = 2a, then the value of a + a is x − a y − a
-
View Hint View Answer Discuss in Forum
x + y = 2a = a + a
⇒ x – a = a – yExpression = a + a x − a y − a = a − a x − a a − y = a − a = 0 x − a x − a Correct Option: B
x + y = 2a = a + a
⇒ x – a = a – yExpression = a + a x − a y − a = a − a x − a a − y = a − a = 0 x − a x − a
-
If a2 + b2 + c2 = ab + bc + ca,
then the value ofa + c is b
-
View Hint View Answer Discuss in Forum
a2 + b2 + c2 = ab + bc + ca
⇒ 2a2 + 2b2 + 2c2 – 2ab – 2bc – 2ca = 0
⇒ a2 + b2 – 2ab + b2 + c2 – 2bc + c2 + a2 – 2ca = 0
⇒ (a – b)2 + (b – c)2 + (c – a)2 = 0
⇒ a – b = 0, b – c = 0, c – a = 0
⇒ a = b, b = c, c = a
⇒ a = b = c∴ a + c = 2a = 2 b a Correct Option: B
a2 + b2 + c2 = ab + bc + ca
⇒ 2a2 + 2b2 + 2c2 – 2ab – 2bc – 2ca = 0
⇒ a2 + b2 – 2ab + b2 + c2 – 2bc + c2 + a2 – 2ca = 0
⇒ (a – b)2 + (b – c)2 + (c – a)2 = 0
⇒ a – b = 0, b – c = 0, c – a = 0
⇒ a = b, b = c, c = a
⇒ a = b = c∴ a + c = 2a = 2 b a
- If (x – 2) is a factor of x2 + 3Qx – 2Q, then the value of Q is
-
View Hint View Answer Discuss in Forum
P(x) = x2 + 3Qx – 2Q
∵ (x – 2) is a factor of P(x).
∴ P(2) = 0
⇒ (2)2 + 3Q × 2 – 2Q = 0
⇒ 4 + 6Q – 2Q = 0
⇒ 4Q + 4 = 0
⇒ 4Q = – 4 ⇒ Q = –1Correct Option: D
P(x) = x2 + 3Qx – 2Q
∵ (x – 2) is a factor of P(x).
∴ P(2) = 0
⇒ (2)2 + 3Q × 2 – 2Q = 0
⇒ 4 + 6Q – 2Q = 0
⇒ 4Q + 4 = 0
⇒ 4Q = – 4 ⇒ Q = –1
- If x + y + z = 13 and x2 + y2 + z2 = 69, then xy + z (x + y) is equal
to
-
View Hint View Answer Discuss in Forum
x + y + z = 13
x2 + y2 + z2 = 69
(x + y + z)2
= x2 + y2 + z2 +2 (xy + yz + zx)
⇒ (13)2 = 69 + 2 (xy + yz + zx)
⇒ 2 (xy + yz + zx)
= 169 – 69 = 100⇒ xy + yz + zx = 100 = 50 2 Correct Option: C
x + y + z = 13
x2 + y2 + z2 = 69
(x + y + z)2
= x2 + y2 + z2 +2 (xy + yz + zx)
⇒ (13)2 = 69 + 2 (xy + yz + zx)
⇒ 2 (xy + yz + zx)
= 169 – 69 = 100⇒ xy + yz + zx = 100 = 50 2