Algebra


  1. Given (a – b) = 2, (a3 – b3) = 26 then (a + b)2 is









  1. View Hint View Answer Discuss in Forum

    (a – b)3 = 23
    ⇒  a3 – b3 – 3ab (a – b) = 8
    ⇒  26 – 3ab × 2 = 8
    ⇒  6ab = 26 – 8 = 18

    ⇒ 
    18
    = 3
    6

    ⇒  (a + b)2 = (a – b)2 + 4ab
    = (2)2 + 4 × 3 = 4 + 12 = 16

    Correct Option: C

    (a – b)3 = 23
    ⇒  a3 – b3 – 3ab (a – b) = 8
    ⇒  26 – 3ab × 2 = 8
    ⇒  6ab = 26 – 8 = 18

    ⇒ 
    18
    = 3
    6

    ⇒  (a + b)2 = (a – b)2 + 4ab
    = (2)2 + 4 × 3 = 4 + 12 = 16


  1. If p = 2 – a, then a3 + 6 ap + p3 – 8 = ?









  1. View Hint View Answer Discuss in Forum

    p = 2 – a ⇒ a + p – 2 = 0
    ∴  a3 + 6ap + p3 – 8
    = a3 + p3 + (–2)3 – 3ap (–2)
    = (a + p – 2) {a2 + p2 + (–2)2 – ap – p (–2) – a (–2)}
    = (a + p – 2) (a2 + p2 + 4 – ap + 2p + 2a) = 0

    Correct Option: A

    p = 2 – a ⇒ a + p – 2 = 0
    ∴  a3 + 6ap + p3 – 8
    = a3 + p3 + (–2)3 – 3ap (–2)
    = (a + p – 2) {a2 + p2 + (–2)2 – ap – p (–2) – a (–2)}
    = (a + p – 2) (a2 + p2 + 4 – ap + 2p + 2a) = 0



  1. If 4r = h +√r2 + h2 then r : h is ? (r ≠ 0)









  1. View Hint View Answer Discuss in Forum

    4r = h + √r2 + h2
    ⇒  4r − h = √r2 + h2
    On squaring both sides,
    (4r – h)2 = (√r2 + h2)2
    ⇒  16r2 + h2 – 8rh = r2 + h2
    ⇒  16r2 – r2 = 8 rh ⇒ 15r2 = 8rh

    ⇒  15r = 8h ⇒
    r
    =
    8
    h15

    Correct Option: C

    4r = h + √r2 + h2
    ⇒  4r − h = √r2 + h2
    On squaring both sides,
    (4r – h)2 = (√r2 + h2)2
    ⇒  16r2 + h2 – 8rh = r2 + h2
    ⇒  16r2 – r2 = 8 rh ⇒ 15r2 = 8rh

    ⇒  15r = 8h ⇒
    r
    =
    8
    h15


  1. If x² – xy + y² = 2 and x4 + x²y² + y4 = 6, then the value of (x² + xy + y²) is :









  1. View Hint View Answer Discuss in Forum

    x4 + x²y² + y4 = 6
    ⇒ (x² – xy + y²) (x² + xy + y²) = 6
    ⇒ 2 × (x² + xy + y²) = 6

    ⇒ x² + xy + y² =
    6
    = 3
    2

    Correct Option: C

    x4 + x²y² + y4 = 6
    ⇒ (x² – xy + y²) (x² + xy + y²) = 6
    ⇒ 2 × (x² + xy + y²) = 6

    ⇒ x² + xy + y² =
    6
    = 3
    2



  1. If x 3 −
    2
    =
    3
    , then the value of x2 +
    1
    will be
    xxx2









  1. View Hint View Answer Discuss in Forum

    x3 −
    2
    =
    3
    xx

    ⇒  3x − 2 =
    3
    x

    ⇒  3x −
    3
    = 2
    x

    On dividing by 3,
    ⇒  x −
    1
    =
    2
    x3

    On squaring both sides,
    ⇒  x2 +
    1
    − 2 =
    4
    x29

    ⇒  x2 +
    1
    = 2 +
    4
    x29

    = 2
    4
    9

    Correct Option: D

    x3 −
    2
    =
    3
    xx

    ⇒  3x − 2 =
    3
    x

    ⇒  3x −
    3
    = 2
    x

    On dividing by 3,
    ⇒  x −
    1
    =
    2
    x3

    On squaring both sides,
    ⇒  x2 +
    1
    − 2 =
    4
    x29

    ⇒  x2 +
    1
    = 2 +
    4
    x29

    = 2
    4
    9