Algebra


  1. If for two real constants a and b, the expression ax3 + 3x2 - 8x + b is exactly divisible by (x + 2) and (x – 2), then









  1. View Hint View Answer Discuss in Forum

    P (x ) = ax3 + 3x2 – 8x + b
    [∵ P (x) is div. by (x + 2) & (x –2)]
    ∴ P (–2) = –8a + 12 + 16 + b = 0
    ⇒ –8a + b + 28 = 0 ...(i)
    ⇒ P(2) = 8a + 12 – 16 + b = 2
    ⇒ 8a + b – 4 = 0 ...(ii)
    By equation (i) + (ii)
    2b + 24 = 0

    ⇒ b = -
    24
    = -12
    2

    From equation (i),
    – 8a – 12 + 28 = 0
    ⇒ –8a = –16 ⇒ a = 2

    Correct Option: C

    P (x ) = ax3 + 3x2 – 8x + b
    [∵ P (x) is div. by (x + 2) & (x –2)]
    ∴ P (–2) = –8a + 12 + 16 + b = 0
    ⇒ –8a + b + 28 = 0 ...(i)
    ⇒ P(2) = 8a + 12 – 16 + b = 2
    ⇒ 8a + b – 4 = 0 ...(ii)
    By equation (i) + (ii)
    2b + 24 = 0

    ⇒ b = -
    24
    = -12
    2

    From equation (i),
    – 8a – 12 + 28 = 0
    ⇒ –8a = –16 ⇒ a = 2


  1. If x +
    1
    =
    3
    , find the value of 8x3 +
    1
    4x28x3









  1. View Hint View Answer Discuss in Forum

    Using Rule 8,

    x +
    1
    =
    3
    4x2

    Multiplying both sides by 2
    ⇒ 2x +
    1
    = 3
    2x

    On cubing both sides,
    ∴ 8x3 +
    1
    + 3 × 2x ×
    1
    × 2x +
    1
    = 27
    8x32x2x

    ⇒ 8x3 +
    1
    + 3 × 3 = 27
    8x3

    ⇒ 8x3 +
    1
    = 27 – 9 = 18
    8x3

    Correct Option: A

    Using Rule 8,

    x +
    1
    =
    3
    4x2

    Multiplying both sides by 2
    ⇒ 2x +
    1
    = 3
    2x

    On cubing both sides,
    ∴ 8x3 +
    1
    + 3 × 2x ×
    1
    × 2x +
    1
    = 27
    8x32x2x

    ⇒ 8x3 +
    1
    + 3 × 3 = 27
    8x3

    ⇒ 8x3 +
    1
    = 27 – 9 = 18
    8x3



  1. If x2 - 3x - 8x + 1 = 0, then the value of x3 +
    1
    is
    x3









  1. View Hint View Answer Discuss in Forum

    Using Rule 8,
    x2 – 3x + 1 = 0
    ⇒ x2 + 1 = 3x

    ⇒ x +
    1
    = 3
    x

    ∴ x3 +
    1
    = x +
    1
    3 - 3 × x ×
    1
    x +
    1
    x3xxx

    = 27 – 3 × 3 = 18

    Correct Option: B

    Using Rule 8,
    x2 – 3x + 1 = 0
    ⇒ x2 + 1 = 3x

    ⇒ x +
    1
    = 3
    x

    ∴ x3 +
    1
    = x +
    1
    3 - 3 × x ×
    1
    x +
    1
    x3xxx

    = 27 – 3 × 3 = 18


  1. If
    1
    =
    1
    +
    1
    ( x ≠ 0,x ≠ 0 , x ≠ y ) then, the value of x3 - y3 is
    x + yxy









  1. View Hint View Answer Discuss in Forum

    1
    =
    1
    +
    1
    =
    y + x
    x + yxyxy

    ⇒ ( x + y )2 = xy
    ⇒ x2 + 2xy + y2 = xy
    ⇒ x2 + 2xy + y2 - xy = 0
    ⇒ x2 + xy + y2 = 0
    ∴ x3 - y3 = (x – y)( x2 + xy + y2 ) = 0

    Correct Option: A

    1
    =
    1
    +
    1
    =
    y + x
    x + yxyxy

    ⇒ ( x + y )2 = xy
    ⇒ x2 + 2xy + y2 = xy
    ⇒ x2 + 2xy + y2 - xy = 0
    ⇒ x2 + xy + y2 = 0
    ∴ x3 - y3 = (x – y)( x2 + xy + y2 ) = 0



  1. If x +
    1
    = 2 ,find the value of 8x3 +
    1
    .
    2xx3









  1. View Hint View Answer Discuss in Forum

    Using Rule 8,

    x +
    1
    = 2
    2x

    ⇒ 2x +
    2
    = 2 × 2 = 4
    2x

    ⇒ 2x +
    1
    = 4
    x

    On cubing both sides,
    ∴ 8x3 +
    1
    + 3 × 2x ×
    1
    2x +
    1
    = 64
    x3xx

    ⇒ 8x3 +
    1
    + 6 × 4 = 64
    x3

    ⇒ 8x3 +
    1
    = 64 – 24 = 40
    x3

    Correct Option: C

    Using Rule 8,

    x +
    1
    = 2
    2x

    ⇒ 2x +
    2
    = 2 × 2 = 4
    2x

    ⇒ 2x +
    1
    = 4
    x

    On cubing both sides,
    ∴ 8x3 +
    1
    + 3 × 2x ×
    1
    2x +
    1
    = 64
    x3xx

    ⇒ 8x3 +
    1
    + 6 × 4 = 64
    x3

    ⇒ 8x3 +
    1
    = 64 – 24 = 40
    x3