Algebra


  1. If   x ≠ 0, y ≠ 0 and z ≠ 0 and
    1
    +
    1
    +
    1
    +
    1
    +
    1
    +
    1
    +
    1
    ,
    x2y2z216xyyzzx
    then the relation among x, y, z is









  1. View Hint View Answer Discuss in Forum

    Check through options.
    If x = y = z, then

    1
    +
    1
    +
    1
    =
    3
    x2y2z2x2

    and
    1
    +
    1
    +
    1
    xyyzzx

    =
    1
    +
    1
    +
    1
    =
    3
    x2x2x2x2

    Correct Option: D

    Check through options.
    If x = y = z, then

    1
    +
    1
    +
    1
    =
    3
    x2y2z2x2

    and
    1
    +
    1
    +
    1
    xyyzzx

    =
    1
    +
    1
    +
    1
    =
    3
    x2x2x2x2


  1. If  
    a
    =
    4
    and
    b
    =
    15
    , then
    18c2 − 7a2
      is equal to
    b5c1645c2 + 20a2









  1. View Hint View Answer Discuss in Forum

    a
    ×
    b
    =
    4
    ×
    15
    bc516

    a
    =
    3
    c4

    ⇒  a =
    3
    c
    4

    Put in the given equation,

    Correct Option: D

    a
    ×
    b
    =
    4
    ×
    15
    bc516

    a
    =
    3
    c4

    ⇒  a =
    3
    c
    4

    Put in the given equation,



  1. Number of solutions of the two equations 4x – y = 2 and 2y – 8x + 4 = 0 is









  1. View Hint View Answer Discuss in Forum

    4x – y = 2      ....(i)
    2y – 8x + 4 = 0
    ⇒  8x – 2y = 4       .....(ii)
    For simultaneous linear equations
    a1x + b1y = c1
    a2x + b2y = c2   if

    a1
    +
    b1
    +
    c1
    ,   there are infinite solutions.
    a2b2c2

    Correct Option: D

    4x – y = 2      ....(i)
    2y – 8x + 4 = 0
    ⇒  8x – 2y = 4       .....(ii)
    For simultaneous linear equations
    a1x + b1y = c1
    a2x + b2y = c2   if

    a1
    +
    b1
    +
    c1
    ,   there are infinite solutions.
    a2b2c2


  1. If  
    x − a2
    +
    x − b2
    +
    x − c2
    = 4(a + b + c), then x is equal to
    b + cc + aa + b









  1. View Hint View Answer Discuss in Forum

    Check through option
    When x = (a + b + c)2,

    x − a2
    +
    x − b2
    +
    x − c2
    b + cc + aa + b

    =
    (a + b + c)2 − a2
    +
    (a + b + c)2 − b2
    +
    (a + b + c)2 − c2
    b + cc + aa + b

    =
    (2a + b + c)(b + c)
    +
    (a + 2b + c)(c + a)
    +
    (a + b + 2c)(a + b)
    b + cc + aa + b

    = 2a + b + c + a + 2b + c + a + b + 2c
    = 4a+4b + 4c = 4 (a + b + c) = RHS.

    Correct Option: A

    Check through option
    When x = (a + b + c)2,

    x − a2
    +
    x − b2
    +
    x − c2
    b + cc + aa + b

    =
    (a + b + c)2 − a2
    +
    (a + b + c)2 − b2
    +
    (a + b + c)2 − c2
    b + cc + aa + b

    =
    (2a + b + c)(b + c)
    +
    (a + 2b + c)(c + a)
    +
    (a + b + 2c)(a + b)
    b + cc + aa + b

    = 2a + b + c + a + 2b + c + a + b + 2c
    = 4a+4b + 4c = 4 (a + b + c) = RHS.



  1. If a2 + b2 + 4c2 = 2 (a + b – 2c) − 3 and a, b, c are real, then the value of (a2 + b2 + c2) is









  1. View Hint View Answer Discuss in Forum

    a2 + b2 + 4c2 = 2a + 2b – 4c − 3
    ⇒  a2 + b2 + 4c2 – 2a – 2b + 4c + 3 = 0
    ⇒  a2 – 2a + 1 + b2 – 2b + 1 + 4c2 + 4c + 1 = 0
    ⇒  (a – 1)2 +(b – 1)2 + (2c + 1)2 = 0
    ∴  a – 1 = 0 ⇒ a = 1;
    b – 1 = 0 ⇒ b = 1;

    2c + 1 = 0 ⇒ c = −
    1
    2

    ∴  a2 + b2 + c2 = 1 + 1 +
    1
    = 2
    1
    44

    Correct Option: D

    a2 + b2 + 4c2 = 2a + 2b – 4c − 3
    ⇒  a2 + b2 + 4c2 – 2a – 2b + 4c + 3 = 0
    ⇒  a2 – 2a + 1 + b2 – 2b + 1 + 4c2 + 4c + 1 = 0
    ⇒  (a – 1)2 +(b – 1)2 + (2c + 1)2 = 0
    ∴  a – 1 = 0 ⇒ a = 1;
    b – 1 = 0 ⇒ b = 1;

    2c + 1 = 0 ⇒ c = −
    1
    2

    ∴  a2 + b2 + c2 = 1 + 1 +
    1
    = 2
    1
    44