Algebra


  1. If P = 999, then the value of ³√P( P² + 3P + 3 ) + 1 is









  1. View Hint View Answer Discuss in Forum

    P = 999 (Given)
    Now , ³√P( P² + 3P + 3 ) + 1
    = ³√( P³ + 3P² + 3P + 1 )
    = ³√( P + 1 )³
    = P + 1 = 999 + 1 = 1000

    Correct Option: A

    P = 999 (Given)
    Now , ³√P( P² + 3P + 3 ) + 1
    = ³√( P³ + 3P² + 3P + 1 )
    = ³√( P + 1 )³
    = P + 1 = 999 + 1 = 1000


  1. If a = 4 . 36, b = 2.39 and c = 1.97, then the value of a3 - b3 - c3 – 3abc is









  1. View Hint View Answer Discuss in Forum

    Using Rule 21,
    Here, a – b – c = 4.36 – 2.39 – 1.97 = 0 ( ∴ a - b - c = 0)
    ∴ a3 - b3 - c3 = 3abc = 0
    ⇒ a3 - b3 - c3 - 3abc = 0

    Correct Option: C

    Using Rule 21,
    Here, a – b – c = 4.36 – 2.39 – 1.97 = 0 ( ∴ a - b - c = 0)
    ∴ a3 - b3 - c3 = 3abc = 0
    ⇒ a3 - b3 - c3 - 3abc = 0



  1. x +
    1
    x -
    1
    x2 +
    1
    - 1x2 +
    1
    + 1 is equal to
    xxx2x2









  1. View Hint View Answer Discuss in Forum

    x +
    1
    x -
    1
    x2 +
    1
    - 1x2 +
    1
    + 1
    xxx2x2

    = x2 -
    1
    x2 +
    1
    2 - 1
    x2x2

    = x2 -
    1
    x4 +
    1
    + 1
    x2x4

    Required answer = x6 -
    1
    x6

    Correct Option: D

    x +
    1
    x -
    1
    x2 +
    1
    - 1x2 +
    1
    + 1
    xxx2x2

    = x2 -
    1
    x2 +
    1
    2 - 1
    x2x2

    = x2 -
    1
    x4 +
    1
    + 1
    x2x4

    Required answer = x6 -
    1
    x6


  1. If a = 11 and b = 9, then the value of
    a2 + b2 + ab
    is :
    a3 - b3









  1. View Hint View Answer Discuss in Forum

    a2 + ab + b2
    =
    a2 + ab + b2
    a3 - b3( a - b )( a2 + ab + b2 )

    =
    1

    a - b

    =
    1
    =
    1
    11 - 92

    Correct Option: A

    a2 + ab + b2
    =
    a2 + ab + b2
    a3 - b3( a - b )( a2 + ab + b2 )

    =
    1

    a - b

    =
    1
    =
    1
    11 - 92



  1. If x2 + y2 + 1 = 2x , then the value of x3 + y5 is









  1. View Hint View Answer Discuss in Forum

    x2 + y2 + 1 = 2x
    ⇒ x2 + y2 + 1 - 2x = 0
    ⇒ x2 - 2x + 1 + y2 = 0
    ⇒ (x – 1)2 + y2 = 0
    ⇒ x – 1 = 0
    ⇒ x = 1 and y = 0
    ∴ x3 + y5 = 1 + 0 = 1

    Correct Option: D

    x2 + y2 + 1 = 2x
    ⇒ x2 + y2 + 1 - 2x = 0
    ⇒ x2 - 2x + 1 + y2 = 0
    ⇒ (x – 1)2 + y2 = 0
    ⇒ x – 1 = 0
    ⇒ x = 1 and y = 0
    ∴ x3 + y5 = 1 + 0 = 1