Algebra
-
If √7 − 2 = a√7 + b, then the value of a is √7 + 2
-
View Hint View Answer Discuss in Forum
(Rationalising the denominator)√7 − 2 = √7 − 2 × √7 − 2 √7 + 2 √7 + 2 √7 − 2 = (√7 − 2)2 = 7 + 4 − 4√7 7 − 4 3 = 11 − 4√7 3 3 ∴ √7 − 2 = a√7 + b √7 + 2 = 11 − 4 √7 = a√7 + b 3 3
Clearly,a = − 4 and b = 11 3 3 Correct Option: B
(Rationalising the denominator)√7 − 2 = √7 − 2 × √7 − 2 √7 + 2 √7 + 2 √7 − 2 = (√7 − 2)2 = 7 + 4 − 4√7 7 − 4 3 = 11 − 4√7 3 3 ∴ √7 − 2 = a√7 + b √7 + 2 = 11 − 4 √7 = a√7 + b 3 3
Clearly,a = − 4 and b = 11 3 3
- If (125)x = 3125, then the value of x is
-
View Hint View Answer Discuss in Forum
(125)x = 3125
⇒ (53)x = 55 ⇒ 53x = 55
⇒ 3x = 5⇒ x = 5 3 Correct Option: C
(125)x = 3125
⇒ (53)x = 55 ⇒ 53x = 55
⇒ 3x = 5⇒ x = 5 3
- If (125)x = 3125, then the value of x is
-
View Hint View Answer Discuss in Forum
(125)x = 3125
⇒ (53)x = 55 ⇒ 53x = 55
⇒ 3x = 5⇒ x = 5 3 Correct Option: C
(125)x = 3125
⇒ (53)x = 55 ⇒ 53x = 55
⇒ 3x = 5⇒ x = 5 3
-
If x2 – 3x + 1 = 0, then the vaule of x + 1 is x
-
View Hint View Answer Discuss in Forum
x2 – 3x + 1 = 0
⇒ x2 + 1 = 3x⇒ x2 + 1 = 3x x x ⇒ x + 1 = 3 x Correct Option: D
x2 – 3x + 1 = 0
⇒ x2 + 1 = 3x⇒ x2 + 1 = 3x x x ⇒ x + 1 = 3 x
-
If 3 3 3 −6 = 3 2x − 1 , then x is equal to 5 5 5
-
View Hint View Answer Discuss in Forum
3 3 3 −6 = 3 2x − 1 5 5 5 ⇒ 3 3 3 −3 3 −3 = 3 2x − 1 5 5 5 5 ⇒ 3 0 3 −3 = 3 2x − 1 5 5 5
⇒ 2x – 1 = – 3
⇒ 2x = – 3 + 1 = – 2
⇒ x = –1
Method : 23 3 3 −6 = 3 2x − 1 5 5 5 ⇒ 3 −6 + 3 = 3 2x − 1 5 5
⇒ –3 = 2x –1
⇒ –2 = 2x
⇒ x = –1Correct Option: C
3 3 3 −6 = 3 2x − 1 5 5 5 ⇒ 3 3 3 −3 3 −3 = 3 2x − 1 5 5 5 5 ⇒ 3 0 3 −3 = 3 2x − 1 5 5 5
⇒ 2x – 1 = – 3
⇒ 2x = – 3 + 1 = – 2
⇒ x = –1
Method : 23 3 3 −6 = 3 2x − 1 5 5 5 ⇒ 3 −6 + 3 = 3 2x − 1 5 5
⇒ –3 = 2x –1
⇒ –2 = 2x
⇒ x = –1