Algebra


  1. If   2x −
    1
    = 5, x ≠ 0, then the value of x2 +
    1
    − 2 is :
    2x16x2









  1. View Hint View Answer Discuss in Forum

    2x -
    1
    = 5
    2x

    On dividing by 2,
    x -
    1
    =
    5
    4x2

    On squaring both sides
    x -
    1
    ² =
    5
    ² =
    25
    4x24

    ⇒ x² +
    1
    -2 × x ×
    1
    =
    25
    16x²4x4

    ⇒ x² +
    1
    =
    25
    +
    1
    16x²42

    =
    25 + 2
    =
    27
    44

    ⇒ x² +
    1
    - 2 =
    27
    - 2 =
    27 - 8
    =
    19
    16x²444

    Correct Option: A

    2x -
    1
    = 5
    2x

    On dividing by 2,
    x -
    1
    =
    5
    4x2

    On squaring both sides
    x -
    1
    ² =
    5
    ² =
    25
    4x24

    ⇒ x² +
    1
    -2 × x ×
    1
    =
    25
    16x²4x4

    ⇒ x² +
    1
    =
    25
    +
    1
    16x²42

    =
    25 + 2
    =
    27
    44

    ⇒ x² +
    1
    - 2 =
    27
    - 2 =
    27 - 8
    =
    19
    16x²444


  1. If   a +
    1
    = 1, b +
    1
    = 1, then the value of (abc) is :
    bc









  1. View Hint View Answer Discuss in Forum

    a +
    1
    = 1
    a

    ⇒ a = 1 -
    1
    =
    b - 1
    bb

    Again,
    b +
    1
    = 1
    c

    ⇒ b = 1 -
    1
    =
    c - 1
    cc

    ∴ a =
    c - 1
    - 1
    b - 1
    = c
    b
    c - 1
    c

    =
    c - 1 - c
    =
    - 1
    c - 1c - 1

    ∴ abc =
    - 1
    ×
    c - 1
    × c = - 1
    c - 1c

    Correct Option: B

    a +
    1
    = 1
    a

    ⇒ a = 1 -
    1
    =
    b - 1
    bb

    Again,
    b +
    1
    = 1
    c

    ⇒ b = 1 -
    1
    =
    c - 1
    cc

    ∴ a =
    c - 1
    - 1
    b - 1
    = c
    b
    c - 1
    c

    =
    c - 1 - c
    =
    - 1
    c - 1c - 1

    ∴ abc =
    - 1
    ×
    c - 1
    × c = - 1
    c - 1c



  1. If  
    3
    =
    a
    +
    b
    be an identify, then the value of b is :
    (x + 2)(2x + 1)2x + 1x + 2









  1. View Hint View Answer Discuss in Forum

    3
    =
    a
    +
    b
    (x + 2)(2x + 1)2x + 1x + 2

    3
    =
    a(x + 2) + b (2x + 1)
    (x + 2)(2x + 1)(2x + 1)(x + 2)

    ⇒ 3 = ax + 2a + 2bx + b
    ⇒ 3 = ax + 2bx + 2a + b
    ⇒ 3 = x (a + 2b) + (2a + b)
    On comparing the respective co– efficients,
    a + 2b = 0
    ⇒ a = – 2b ..... (i)
    and, 2a + b = 3 2 (– 2b) + b = 3
    ⇒ – 4b + b = 3
    ⇒ – 3b = 3 ⇒ b =
    - 3
    = - 1
    3

    Correct Option: B

    3
    =
    a
    +
    b
    (x + 2)(2x + 1)2x + 1x + 2

    3
    =
    a(x + 2) + b (2x + 1)
    (x + 2)(2x + 1)(2x + 1)(x + 2)

    ⇒ 3 = ax + 2a + 2bx + b
    ⇒ 3 = ax + 2bx + 2a + b
    ⇒ 3 = x (a + 2b) + (2a + b)
    On comparing the respective co– efficients,
    a + 2b = 0
    ⇒ a = – 2b ..... (i)
    and, 2a + b = 3 2 (– 2b) + b = 3
    ⇒ – 4b + b = 3
    ⇒ – 3b = 3 ⇒ b =
    - 3
    = - 1
    3


  1. If  x +
    1
    = 5, then find the value of
    6x
    xx2 + x + 1









  1. View Hint View Answer Discuss in Forum

    It is given,   x +
    1
    = 5
    x

    Expression =
    6x
    x2 + x + 1

    =
    6x
    =
    6
    x
    x + 1 +
    1
    x +
    1
    + 1
    xx

    =
    6
    =
    6
    = 1
    5 + 16

    Correct Option: C

    It is given,   x +
    1
    = 5
    x

    Expression =
    6x
    x2 + x + 1

    =
    6x
    =
    6
    x
    x + 1 +
    1
    x +
    1
    + 1
    xx

    =
    6
    =
    6
    = 1
    5 + 16



  1. If a + b = 5 and a – b = 3, then the value of (a2 + b2) is :









  1. View Hint View Answer Discuss in Forum

    a + b = 5
    a – b = 3
    ∵  (a + b)2 + (a – b)2
    = 2 (a2 + b2)
    ⇒  2 (a2 + b2) = 52 + 32
    = 25 + 9 = 34

    ⇒  a2 + b2 =
    34
    = 17
    2

    Correct Option: A

    a + b = 5
    a – b = 3
    ∵  (a + b)2 + (a – b)2
    = 2 (a2 + b2)
    ⇒  2 (a2 + b2) = 52 + 32
    = 25 + 9 = 34

    ⇒  a2 + b2 =
    34
    = 17
    2