Algebra
-
If 2x − 1 = 5, x ≠ 0, then the value of x2 + 1 − 2 is : 2x 16x2
-
View Hint View Answer Discuss in Forum
2x - 1 = 5 2x
On dividing by 2,x - 1 = 5 4x 2
On squaring both sidesx - 1 ² = 5 ² = 25 4x 2 4 ⇒ x² + 1 -2 × x × 1 = 25 16x² 4x 4 ⇒ x² + 1 = 25 + 1 16x² 4 2 = 25 + 2 = 27 4 4 ⇒ x² + 1 - 2 = 27 - 2 = 27 - 8 = 19 16x² 4 4 4 Correct Option: A
2x - 1 = 5 2x
On dividing by 2,x - 1 = 5 4x 2
On squaring both sidesx - 1 ² = 5 ² = 25 4x 2 4 ⇒ x² + 1 -2 × x × 1 = 25 16x² 4x 4 ⇒ x² + 1 = 25 + 1 16x² 4 2 = 25 + 2 = 27 4 4 ⇒ x² + 1 - 2 = 27 - 2 = 27 - 8 = 19 16x² 4 4 4
-
If a + 1 = 1, b + 1 = 1, then the value of (abc) is : b c
-
View Hint View Answer Discuss in Forum
a + 1 = 1 a ⇒ a = 1 - 1 = b - 1 b b
Again,b + 1 = 1 c ⇒ b = 1 - 1 = c - 1 c c ∴ a = c - 1 - 1 b - 1 = c b c - 1 c = c - 1 - c = - 1 c - 1 c - 1 ∴ abc = - 1 × c - 1 × c = - 1 c - 1 c Correct Option: B
a + 1 = 1 a ⇒ a = 1 - 1 = b - 1 b b
Again,b + 1 = 1 c ⇒ b = 1 - 1 = c - 1 c c ∴ a = c - 1 - 1 b - 1 = c b c - 1 c = c - 1 - c = - 1 c - 1 c - 1 ∴ abc = - 1 × c - 1 × c = - 1 c - 1 c
-
If 3 = a + b be an identify, then the value of b is : (x + 2)(2x + 1) 2x + 1 x + 2
-
View Hint View Answer Discuss in Forum
3 = a + b (x + 2)(2x + 1) 2x + 1 x + 2 ⇒ 3 = a(x + 2) + b (2x + 1) (x + 2)(2x + 1) (2x + 1)(x + 2)
⇒ 3 = ax + 2a + 2bx + b
⇒ 3 = ax + 2bx + 2a + b
⇒ 3 = x (a + 2b) + (2a + b)
On comparing the respective co– efficients,
a + 2b = 0
⇒ a = – 2b ..... (i)
and, 2a + b = 3 2 (– 2b) + b = 3
⇒ – 4b + b = 3⇒ – 3b = 3 ⇒ b = - 3 = - 1 3 Correct Option: B
3 = a + b (x + 2)(2x + 1) 2x + 1 x + 2 ⇒ 3 = a(x + 2) + b (2x + 1) (x + 2)(2x + 1) (2x + 1)(x + 2)
⇒ 3 = ax + 2a + 2bx + b
⇒ 3 = ax + 2bx + 2a + b
⇒ 3 = x (a + 2b) + (2a + b)
On comparing the respective co– efficients,
a + 2b = 0
⇒ a = – 2b ..... (i)
and, 2a + b = 3 2 (– 2b) + b = 3
⇒ – 4b + b = 3⇒ – 3b = 3 ⇒ b = - 3 = - 1 3
-
If x + 1 = 5, then find the value of 6x x x2 + x + 1
-
View Hint View Answer Discuss in Forum
It is given, x + 1 = 5 x Expression = 6x x2 + x + 1 = 6x = 6 x x + 1 + 1 x + 1 + 1 x x = 6 = 6 = 1 5 + 1 6 Correct Option: C
It is given, x + 1 = 5 x Expression = 6x x2 + x + 1 = 6x = 6 x x + 1 + 1 x + 1 + 1 x x = 6 = 6 = 1 5 + 1 6
- If a + b = 5 and a – b = 3, then the value of (a2 + b2) is :
-
View Hint View Answer Discuss in Forum
a + b = 5
a – b = 3
∵ (a + b)2 + (a – b)2
= 2 (a2 + b2)
⇒ 2 (a2 + b2) = 52 + 32
= 25 + 9 = 34⇒ a2 + b2 = 34 = 17 2 Correct Option: A
a + b = 5
a – b = 3
∵ (a + b)2 + (a – b)2
= 2 (a2 + b2)
⇒ 2 (a2 + b2) = 52 + 32
= 25 + 9 = 34⇒ a2 + b2 = 34 = 17 2