Algebra


  1. If a + b + c = 6 and ab + bc + ca = 11, then the value of bc (b + c) + ca (c + a) + ab (a + b) + 3abc is









  1. View Hint View Answer Discuss in Forum

    a + b + c = 6 and ab + bc + ca = 11
    ∴  bc (b + c) + ca (c + a) + ab (a + b) + 3abc
    = bc (b + c) + abc + ca (c + a) + abc + ab (a + b) + abc
    = bc (a + b + c) + ca (a + b + c) + ab (a + b + c)
    = (a + b + c) (bc + ca + ab)
    = 6 × 11 = 66

    Correct Option: B

    a + b + c = 6 and ab + bc + ca = 11
    ∴  bc (b + c) + ca (c + a) + ab (a + b) + 3abc
    = bc (b + c) + abc + ca (c + a) + abc + ab (a + b) + abc
    = bc (a + b + c) + ca (a + b + c) + ab (a + b + c)
    = (a + b + c) (bc + ca + ab)
    = 6 × 11 = 66


  1. If   x =
    3
    , then the value of 27x3 – 54x2 + 36x – 11 is
    2









  1. View Hint View Answer Discuss in Forum

    x =
    3
    (Given)
    2

    ∴  27x3 – 54x2 + 36x – 11
    = (3x)3 – 3 × (3x)2 × 2 + 3 × 3x
    (2)2 – (2)3 – 3
    = (3x – 2)3 – 3
    [∵  (a – b)3 = a3 – 3a2 b + 3ab2 – b3]
    =
    3 × 3
    − 2 3 − 3
    2

    =
    9
    − 2 3 − 3
    2

    =
    9 − 4
    3 − 3
    2

    =
    5
    3 − 3
    2

    =
    125
    − 3
    8

    =
    125 − 24
    8

    =
    101
    8

    12
    5
    8

    Correct Option: D

    x =
    3
    (Given)
    2

    ∴  27x3 – 54x2 + 36x – 11
    = (3x)3 – 3 × (3x)2 × 2 + 3 × 3x
    (2)2 – (2)3 – 3
    = (3x – 2)3 – 3
    [∵  (a – b)3 = a3 – 3a2 b + 3ab2 – b3]
    =
    3 × 3
    − 2 3 − 3
    2

    =
    9
    − 2 3 − 3
    2

    =
    9 − 4
    3 − 3
    2

    =
    5
    3 − 3
    2

    =
    125
    − 3
    8

    =
    125 − 24
    8

    =
    101
    8

    12
    5
    8



  1. If x +
    1
    2 = 3, then the value ofx3 +
    1
    is
    xx3









  1. View Hint View Answer Discuss in Forum

    x +
    1
    2 = 3
    x

    ∴  x +
    1
    = √3
    x

    On cubing both sides,
    x +
    1
    3 = (√3)3
    x

    ⇒  x3 +
    1
    + 3x +
    1
    = 3√3
    x3x

    ⇒  x3 +
    1
    + 3√3 = 3√3
    x3

    ⇒  x3 +
    1
    = 3√3 − 3√3 = 0
    x3

    Correct Option: A

    x +
    1
    2 = 3
    x

    ∴  x +
    1
    = √3
    x

    On cubing both sides,
    x +
    1
    3 = (√3)3
    x

    ⇒  x3 +
    1
    + 3x +
    1
    = 3√3
    x3x

    ⇒  x3 +
    1
    + 3√3 = 3√3
    x3

    ⇒  x3 +
    1
    = 3√3 − 3√3 = 0
    x3


  1. If l + m + n = 9 and l2 + m2 + n2 31, then the value of (lm + mn + nl) will be









  1. View Hint View Answer Discuss in Forum

    l2 + m2 + n2 31
    l + m + n = 9
    On squaring both sides,
    (l + m + n)2 = 81
    ⇒  l2 + m2 + n2 + 2 (lm + mn + nl) = 81
    ⇒  31 + 2(lm + mn + nl) = 81
    ⇒  2(lm + mn + nl) = 81 – 31 = 50

    ⇒  lm + mn + nl =
    50
    = 25
    2

    Correct Option: C

    l2 + m2 + n2 31
    l + m + n = 9
    On squaring both sides,
    (l + m + n)2 = 81
    ⇒  l2 + m2 + n2 + 2 (lm + mn + nl) = 81
    ⇒  31 + 2(lm + mn + nl) = 81
    ⇒  2(lm + mn + nl) = 81 – 31 = 50

    ⇒  lm + mn + nl =
    50
    = 25
    2



  1. If  
    a
    +
    b
    = 1, the value of a3 + b3 is equal to
    ba









  1. View Hint View Answer Discuss in Forum

    a
    +
    b
    = 1 ⇒
    a2 + b2
    = 1
    baab

    ⇒  a2 + b2 = ab
    ⇒  a2 – ab + b2
    = 0
    ∴  a3 + b3 = (a + b) (a2 – ab + b2) = 0

    Correct Option: A

    a
    +
    b
    = 1 ⇒
    a2 + b2
    = 1
    baab

    ⇒  a2 + b2 = ab
    ⇒  a2 – ab + b2
    = 0
    ∴  a3 + b3 = (a + b) (a2 – ab + b2) = 0