Algebra


  1. If x +
    1
    =
    3
    , find the value of 8x3 +
    1
    4x28x3









  1. View Hint View Answer Discuss in Forum

    Using Rule 8,

    x +
    1
    =
    3
    4x2

    Multiplying both sides by 2
    ⇒ 2x +
    1
    = 3
    2x

    On cubing both sides,
    ∴ 8x3 +
    1
    + 3 × 2x ×
    1
    × 2x +
    1
    = 27
    8x32x2x

    ⇒ 8x3 +
    1
    + 3 × 3 = 27
    8x3

    ⇒ 8x3 +
    1
    = 27 – 9 = 18
    8x3

    Correct Option: A

    Using Rule 8,

    x +
    1
    =
    3
    4x2

    Multiplying both sides by 2
    ⇒ 2x +
    1
    = 3
    2x

    On cubing both sides,
    ∴ 8x3 +
    1
    + 3 × 2x ×
    1
    × 2x +
    1
    = 27
    8x32x2x

    ⇒ 8x3 +
    1
    + 3 × 3 = 27
    8x3

    ⇒ 8x3 +
    1
    = 27 – 9 = 18
    8x3


  1. If x4 +
    1
    = 119 ,and x > l, then the value of x3 -
    1
    is
    x4x3









  1. View Hint View Answer Discuss in Forum

    Using Rule1 and 8,

    x4 +
    1
    = 119
    x4

    x2 +
    1
    2 - 2 = 119
    x2

    x2 +
    1
    2 = 121
    x2

    ⇒ x2 +
    1
    = 11
    x2

    x -
    1
    2 + 2 = 11
    x

    x -
    1
    2 = 9
    x

    ⇒ x -
    1
    = 3
    x

    ∴ x3 -
    1
    - 3x -
    1
    = 27
    x3x

    ⇒ x3 -
    1
    - 3 × 3 = 27
    x3

    ⇒ x3 -
    1
    = 27 + 9 = 36
    x3

    Correct Option: D

    Using Rule1 and 8,

    x4 +
    1
    = 119
    x4

    x2 +
    1
    2 - 2 = 119
    x2

    x2 +
    1
    2 = 121
    x2

    ⇒ x2 +
    1
    = 11
    x2

    x -
    1
    2 + 2 = 11
    x

    x -
    1
    2 = 9
    x

    ⇒ x -
    1
    = 3
    x

    ∴ x3 -
    1
    - 3x -
    1
    = 27
    x3x

    ⇒ x3 -
    1
    - 3 × 3 = 27
    x3

    ⇒ x3 -
    1
    = 27 + 9 = 36
    x3



  1. If x + y = z, then the expression x3 + y3 - z3 + 3xyz will be equal to :









  1. View Hint View Answer Discuss in Forum

    Using Rule 20,
    x + y = z ⇒ x + y + (–z) = 0
    ∴ x3 + y3 - z3 + 3xyz = x3 + y3 + ( - z )3 – 3x.y (–z) = 0

    Correct Option: A

    Using Rule 20,
    x + y = z ⇒ x + y + (–z) = 0
    ∴ x3 + y3 - z3 + 3xyz = x3 + y3 + ( - z )3 – 3x.y (–z) = 0


  1. If 3x +
    1
    = 5 , then the value of 8x3 +
    1
    is
    2x27x3










  1. View Hint View Answer Discuss in Forum

    Using Rule 8,

    3x +
    1
    = 5
    2x

    On multiplying both sides by ( 2 / 5 )
    ⇒ 2x +
    1
    =
    10
    3x3

    Cubing both sides,
    ∴ 8x3 +
    1
    + 3 × 2x ×
    1
    × 2x +
    1
    =
    1000
    27x33x3x27

    ⇒ 8x3 +
    1
    + 3 × 3 = 27
    8x3

    ⇒ 8x3 +
    1
    + 2 ×
    10
    =
    1000
    27x3327

    ⇒ 8x3 +
    1
    =
    1000
    -
    20
    27x3273

    ⇒ 8x3 +
    1
    =
    1000 - 180
    =
    820
    = 30
    10
    27x3272727

    Correct Option: B

    Using Rule 8,

    3x +
    1
    = 5
    2x

    On multiplying both sides by ( 2 / 5 )
    ⇒ 2x +
    1
    =
    10
    3x3

    Cubing both sides,
    ∴ 8x3 +
    1
    + 3 × 2x ×
    1
    × 2x +
    1
    =
    1000
    27x33x3x27

    ⇒ 8x3 +
    1
    + 3 × 3 = 27
    8x3

    ⇒ 8x3 +
    1
    + 2 ×
    10
    =
    1000
    27x3327

    ⇒ 8x3 +
    1
    =
    1000
    -
    20
    27x3273

    ⇒ 8x3 +
    1
    =
    1000 - 180
    =
    820
    = 30
    10
    27x3272727



  1. If a +
    1
    + 1 = 0 ( a ≠ 0 ) ,then the value of ( a4 - a ) is :
    a









  1. View Hint View Answer Discuss in Forum

    Given , a +
    1
    + 1 = 0
    a

    ⇒ a2 + a + 1 = 0
    ⇒ a4 - a = a(a3 – 1)
    = a(a – 1)(a2 + a + 1 ) = 0

    Correct Option: A

    Given , a +
    1
    + 1 = 0
    a

    ⇒ a2 + a + 1 = 0
    ⇒ a4 - a = a(a3 – 1)
    = a(a – 1)(a2 + a + 1 ) = 0