Algebra


  1. If for a non–zero x, 3x2 + 5x + 3 = 0, then the value of x3 +
    1
    is :
    x3









  1. View Hint View Answer Discuss in Forum

    3x2 + 5x + 3 = 0
    ⇒  3x2 + 3 = –5x

    ⇒ 
    3x2 + 3
    = –5
    x

    ⇒  3x +
    3
    = –5
    x

    ⇒  x +
    1
    = –
    5
    x3

    On cubing both sides,
    x +
    1
    3 =
    −5
    3 =
    −125
    x327

    ⇒  x3 +
    1
    + 3 x +
    1
    =
    −125
    x3x27

    ⇒  x3 +
    1
    + 3 ×
    −5
    =
    −125
    x3327

    ⇒  x3 +
    1
    =
    −125
    + 5
    x327

    =
    −125 + 135
    =
    10
    2727

    Correct Option: A

    3x2 + 5x + 3 = 0
    ⇒  3x2 + 3 = –5x

    ⇒ 
    3x2 + 3
    = –5
    x

    ⇒  3x +
    3
    = –5
    x

    ⇒  x +
    1
    = –
    5
    x3

    On cubing both sides,
    x +
    1
    3 =
    −5
    3 =
    −125
    x327

    ⇒  x3 +
    1
    + 3 x +
    1
    =
    −125
    x3x27

    ⇒  x3 +
    1
    + 3 ×
    −5
    =
    −125
    x3327

    ⇒  x3 +
    1
    =
    −125
    + 5
    x327

    =
    −125 + 135
    =
    10
    2727


  1. If a + b + c = 1, ab + bc + ca = – 1 and abc = –1, then the value of a3 + b3 + c3 is :









  1. View Hint View Answer Discuss in Forum

    a + b + c = 1
    ab + bc + ca = –1
    (a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca)
    ⇒  1 = a2 + b2 + c2 + 2 (–1)
    ⇒  a2 + b2 + c2 = 3
    ∴  a3 + b3 + c3 = 3abc + 4
    = –3 + 4 = 1

    Correct Option: A

    a + b + c = 1
    ab + bc + ca = –1
    (a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca)
    ⇒  1 = a2 + b2 + c2 + 2 (–1)
    ⇒  a2 + b2 + c2 = 3
    ∴  a3 + b3 + c3 = 3abc + 4
    = –3 + 4 = 1



  1. If (2a – 3)2 + (3b + 4)2 + (6c + 1)2 = 0, then the value of
    a3 + b3 + c3 − 3ac
    + 3 is :
    a2 + b2 + c2









  1. View Hint View Answer Discuss in Forum

    (2a – 3)2 + (3b + 4)2 + (6c + 1)2 = 0

    ∴  2a – 3 = 0 ⇒ a =
    3
    ,
    2

    3b + 4 = 0 ⇒ b =
    −4
    3

    6c + 1 = 0 ⇒ c = –
    1
    6

    ∴ a + b + c =
    3
    4
    1
    236

    =
    9 − 8 − 1
    = 0
    6

    ∴  a3 + b3 + c3 − 3ac = 0
    ∴ 
    a3 + b3 + c3 − 3ac
    + 3
    a2 + b2 + c2

    = 0 + 3 = 3

    Correct Option: D

    (2a – 3)2 + (3b + 4)2 + (6c + 1)2 = 0

    ∴  2a – 3 = 0 ⇒ a =
    3
    ,
    2

    3b + 4 = 0 ⇒ b =
    −4
    3

    6c + 1 = 0 ⇒ c = –
    1
    6

    ∴ a + b + c =
    3
    4
    1
    236

    =
    9 − 8 − 1
    = 0
    6

    ∴  a3 + b3 + c3 − 3ac = 0
    ∴ 
    a3 + b3 + c3 − 3ac
    + 3
    a2 + b2 + c2

    = 0 + 3 = 3


  1. If   x +
    1
    = –2 then the vlaue of xp + xq is :
    x
    (where p is an even number and q is an odd number)









  1. View Hint View Answer Discuss in Forum

    x +
    1
    = –2
    x

    ⇒  x2 + 1 = –2x
    ⇒  x2 + 2x + 1 = 0
    ⇒  (x + 1)2 = 0
    ⇒  x = –1
    ∴  xp + xq
    = (–1)p + (–1)q
    = 1 – 1 = 0

    Correct Option: D

    x +
    1
    = –2
    x

    ⇒  x2 + 1 = –2x
    ⇒  x2 + 2x + 1 = 0
    ⇒  (x + 1)2 = 0
    ⇒  x = –1
    ∴  xp + xq
    = (–1)p + (–1)q
    = 1 – 1 = 0



  1. Equation of line √3x + y − 8 = 0 can be represented in normal form as









  1. View Hint View Answer Discuss in Forum

    Equation of line in normal form can be written as

    ax
    +
    by
    +
    c
    = 0
    a² + b²a² + b²a² + b²

    ⇒ 
    3x
    +
    y
    8
    = 0
    3² + 1²3² + 1¹3² + 1¹

    3x
    +
    y
    8
    = 0
    444

    ⇒ 
    3x
    +
    y
    8
    = 0
    222

    Correct Option: A

    Equation of line in normal form can be written as

    ax
    +
    by
    +
    c
    = 0
    a² + b²a² + b²a² + b²

    ⇒ 
    3x
    +
    y
    8
    = 0
    3² + 1²3² + 1¹3² + 1¹

    3x
    +
    y
    8
    = 0
    444

    ⇒ 
    3x
    +
    y
    8
    = 0
    222