Algebra
- If a + b + c = 15 and a2 + b2 + c2 = 83 then the value of a3 + b3 + c3 – 3abc
-
View Hint View Answer Discuss in Forum
a + b + c = 15
∴ (a + b + c)2 = 225
∴ a2 + b2 + c2 + 2 (ab + bc + ca)
= 225
⇒ 2 (ab + bc + ca) = 225 – 83
= 142
⇒ ab + bc + ca = 142 ÷ 2 = 71
∴ a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 – ab – bc – ca)
= 15 (83 – 71) = 15 × 12 = 180Correct Option: B
a + b + c = 15
∴ (a + b + c)2 = 225
∴ a2 + b2 + c2 + 2 (ab + bc + ca)
= 225
⇒ 2 (ab + bc + ca) = 225 – 83
= 142
⇒ ab + bc + ca = 142 ÷ 2 = 71
∴ a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 – ab – bc – ca)
= 15 (83 – 71) = 15 × 12 = 180
- . If a – b = 3 and a3 - b3 = 117 then |a + b| is equal to
-
View Hint View Answer Discuss in Forum
a – b = 3
a3 - b3 = 117
a3 - b3 = ( a - b )3 + 3ab (a – b)
⇒ 117 = 27 + 3ab (3)
⇒ 9ab = 117 – 27 = 90
⇒ ab = 10
∴ ( a + b )2 = ( a - b )2 + 4ab
= 9 + 40 = 49
∴ |a + b| = 7Correct Option: C
a – b = 3
a3 - b3 = 117
a3 - b3 = ( a - b )3 + 3ab (a – b)
⇒ 117 = 27 + 3ab (3)
⇒ 9ab = 117 – 27 = 90
⇒ ab = 10
∴ ( a + b )2 = ( a - b )2 + 4ab
= 9 + 40 = 49
∴ |a + b| = 7
-
If x + 1 = 1 ,then ( x + 1 )5 + 1 equals x + 1 ( x + 1 )5
-
View Hint View Answer Discuss in Forum
x + 1 = 1 x + 1
Adding 1 on both sides ,⇒ ( x + 1 ) + 1 = 2 ( x + 1 )
On squaring,⇒ ( x + 1 )2 + 1 + 2 = 4 ( x + 1 )2 ⇒ ( x + 1 )2 + 1 = 2 ...(i) ( x + 1 )2 Again, cubing , ( x + 1 ) + 1 = 2 ( x + 1 ) ⇒ ( x + 1 )3 + 1 + 3 ( x + 1 ) + 1 = 8 ( x + 1 )3 ( x + 1 ) ⇒ ( x + 1 )3 + 1 = 8 – 3 × 2 = 2 ( x + 1 )3 ∴ ( x + 1 )2 + 1 ( x + 1 )3 + 1 = 2 × 2 = 4 ( x + 1 )2 ( x + 1 )3 ⇒ ( x + 1 )5 + ( x + 1 ) + 1 + 1 = 4 ( x + 1 ) ( x + 1 )5 ⇒ ( x + 1 )5 + 1 = 4 – 2 = 2 ( x + 1 )5
Second method :Here, x + 1 = 1 x + 1 ⇒ ( x + 1 ) + 1 = 2 ( x + 1 ) ∴ ( x + 1 )2 + 1 = 2 ( x + 1 )2 Correct Option: B
x + 1 = 1 x + 1
Adding 1 on both sides ,⇒ ( x + 1 ) + 1 = 2 ( x + 1 )
On squaring,⇒ ( x + 1 )2 + 1 + 2 = 4 ( x + 1 )2 ⇒ ( x + 1 )2 + 1 = 2 ...(i) ( x + 1 )2 Again, cubing , ( x + 1 ) + 1 = 2 ( x + 1 ) ⇒ ( x + 1 )3 + 1 + 3 ( x + 1 ) + 1 = 8 ( x + 1 )3 ( x + 1 ) ⇒ ( x + 1 )3 + 1 = 8 – 3 × 2 = 2 ( x + 1 )3 ∴ ( x + 1 )2 + 1 ( x + 1 )3 + 1 = 2 × 2 = 4 ( x + 1 )2 ( x + 1 )3 ⇒ ( x + 1 )5 + ( x + 1 ) + 1 + 1 = 4 ( x + 1 ) ( x + 1 )5 ⇒ ( x + 1 )5 + 1 = 4 – 2 = 2 ( x + 1 )5
Second method :Here, x + 1 = 1 x + 1 ⇒ ( x + 1 ) + 1 = 2 ( x + 1 ) ∴ ( x + 1 )2 + 1 = 2 ( x + 1 )2
-
If 1 - 1 = 1 , then the value of a3 + b3 is a b a - b
-
View Hint View Answer Discuss in Forum
∴ 1 + 1 = 1 a b a - b ⇒ b - a = 1 ab a - b
⇒ (a – b) (a – b) = –ab
⇒ a2 – 2ab + b2 = –ab
⇒ a2 – ab + b2 = 0
∴ a3 + b3 = (a + b)(a2 – ab + b2) = 0Correct Option: A
∴ 1 + 1 = 1 a b a - b ⇒ b - a = 1 ab a - b
⇒ (a – b) (a – b) = –ab
⇒ a2 – 2ab + b2 = –ab
⇒ a2 – ab + b2 = 0
∴ a3 + b3 = (a + b)(a2 – ab + b2) = 0
- If a + b + c = 0, then a3 + b3 + c3 is equal to
-
View Hint View Answer Discuss in Forum
Using Rule 21,
∴ a3 + b3 + c3 – 3abc = (a + b + c)(a2 + b2 + c2 – ab – bc – ca)
If a + b + c = 0, then a3 + b3 + c3 = 3abcCorrect Option: D
Using Rule 21,
∴ a3 + b3 + c3 – 3abc = (a + b + c)(a2 + b2 + c2 – ab – bc – ca)
If a + b + c = 0, then a3 + b3 + c3 = 3abc
-