Algebra
- The expression x4 – 2x2 + k will be a perfect square when the value of k is
-
View Hint View Answer Discuss in Forum
(a – b)2 = a2 –2ab + b2
x4 – 2x2 + k = (x2)2 – 2.x2 .1+ k
∴ k = (1)2 = 1Correct Option: B
(a – b)2 = a2 –2ab + b2
x4 – 2x2 + k = (x2)2 – 2.x2 .1+ k
∴ k = (1)2 = 1
- If 2x + 3 = 32, then the value of 3x+1 is equal to
-
View Hint View Answer Discuss in Forum
2x + 3 = 32 = 25
⇒ x + 3 = 5 ⇒ x = 5 – 3 = 2
∴ 3x + 1 = 33 = 27Correct Option: A
2x + 3 = 32 = 25
⇒ x + 3 = 5 ⇒ x = 5 – 3 = 2
∴ 3x + 1 = 33 = 27
-
If x = 3 , the value of 6 + y − x is : y 4 7 y + x
-
View Hint View Answer Discuss in Forum
Given, x = 3 y 4 Now, 6 + y − x 7 y + x = (6/7) + 1 − x y 1 + x y
[Dividing Nr and Dr by y]= (6/7) + 1 − 3 4 1 + 3 4 = 6 + 4 − 3 7 4 + 3 = 6 + 1 = 1 7 7 Correct Option: A
Given, x = 3 y 4 Now, 6 + y − x 7 y + x = (6/7) + 1 − x y 1 + x y
[Dividing Nr and Dr by y]= (6/7) + 1 − 3 4 1 + 3 4 = 6 + 4 − 3 7 4 + 3 = 6 + 1 = 1 7 7
-
If n + 2 n + 1 n + 1 n = 97 then the value of n is 3 2 7
-
View Hint View Answer Discuss in Forum
n + 2n + n + n = 97 3 2 7 ⇒ 42n + 28n + 21n + 6n = 97 42 ⇒ 97n = 97 ⇒ n = 97 × 42 = 42 42 97
∴ n = 42Correct Option: B
n + 2n + n + n = 97 3 2 7 ⇒ 42n + 28n + 21n + 6n = 97 42 ⇒ 97n = 97 ⇒ n = 97 × 42 = 42 42 97
∴ n = 42
- If 5√x + 12√x = 13√x , then x is equal to
-
View Hint View Answer Discuss in Forum
5√x + 12√x = 13√x
We know that 52 + 122 + 132
[Pythagorean Triplet]
∴ √x = 2 ⇒ x = 22 = 4Correct Option: B
5√x + 12√x = 13√x
We know that 52 + 122 + 132
[Pythagorean Triplet]
∴ √x = 2 ⇒ x = 22 = 4