Algebra
- If a, b are rational numbers and ( a − 1) √2 + 3 = b√2 + a , the value of (a + b) is
-
View Hint View Answer Discuss in Forum
(a − 1)√2 + 3 = b√2 + a
⇒ a = 3 ; a – 1 = b
⇒ 3 – 1 = b ⇒ b = 2
∴ a + b = 3 + 2 = 5Correct Option: D
(a − 1)√2 + 3 = b√2 + a
⇒ a = 3 ; a – 1 = b
⇒ 3 – 1 = b ⇒ b = 2
∴ a + b = 3 + 2 = 5
-
If a = √5 + 1 and b = √5 − 1 , then the value of √5 − 1 √5 − 1 a2 + ab + b2 is a2 − ab + b2
-
View Hint View Answer Discuss in Forum
a = √5 + 1 = √5 + 1 × √5 + 1 √5 − 1 √5 − 1 √5 + 1 = (√5 + 1)2 = 5 + 1 + 2√5 5 − 1 4 = 3 + √5 2 ∴ b = √5 − 1 = 3 − √5 2 2 ∴ a + b = 3 + √5 + 3 − √5 = 3 2 2 and ab = √5 + 1 × √5 − 1 = 1 √5 − 1 √5 + 1 ∴ Expression = a2 + ab + b2 = (a + b)2 − ab a2 − ab + b2 (a + b)2 − 3ab = 9 − 1 = 8 = 4 9 − 3 6 3 Correct Option: B
a = √5 + 1 = √5 + 1 × √5 + 1 √5 − 1 √5 − 1 √5 + 1 = (√5 + 1)2 = 5 + 1 + 2√5 5 − 1 4 = 3 + √5 2 ∴ b = √5 − 1 = 3 − √5 2 2 ∴ a + b = 3 + √5 + 3 − √5 = 3 2 2 and ab = √5 + 1 × √5 − 1 = 1 √5 − 1 √5 + 1 ∴ Expression = a2 + ab + b2 = (a + b)2 − ab a2 − ab + b2 (a + b)2 − 3ab = 9 − 1 = 8 = 4 9 − 3 6 3
-
If 64x + 1 = 64 , then the value of x is 4x
-
View Hint View Answer Discuss in Forum
(64)x + 1 = 64 4x
⇒ (43)x + 1 × 4x = 64
⇒ 43x + 3 + x = 43
⇒ 44x + 3 = 43
⇒ 4x + 3 = 3
⇒ x = 0Correct Option: B
(64)x + 1 = 64 4x
⇒ (43)x + 1 × 4x = 64
⇒ 43x + 3 + x = 43
⇒ 44x + 3 = 43
⇒ 4x + 3 = 3
⇒ x = 0
- If ax2 + bx + c = a (x – p)2 , then the relation among a, b, c would be
-
View Hint View Answer Discuss in Forum
ax2 + bx + c = a (x – p)2
⇒ ax2 + bx + c = a (x2 – 2px + p2)
⇒ ax2 + bx + c = ax2 – 2apx + ap2
Comparing the corresponding coefficients,
b = – 2ap and c = ap2⇒ b2 = 4a2p2 and p2 = c a ⇒ p2 = b2 ; 4a2 ∴ b2 = = c ⇒ b2 = 4ac 4a2 a Correct Option: C
ax2 + bx + c = a (x – p)2
⇒ ax2 + bx + c = a (x2 – 2px + p2)
⇒ ax2 + bx + c = ax2 – 2apx + ap2
Comparing the corresponding coefficients,
b = – 2ap and c = ap2⇒ b2 = 4a2p2 and p2 = c a ⇒ p2 = b2 ; 4a2 ∴ b2 = = c ⇒ b2 = 4ac 4a2 a
- If a + b + c + d = 1, then the maximum value of (1 + a) (1 + b) (1 + c) (1 + d) is
-
View Hint View Answer Discuss in Forum
For maximum value,
a = b = c = d = 1 4
∴ (1 + a) (1 + b) (1 + c) (1 + d)5 4 4 Correct Option: D
For maximum value,
a = b = c = d = 1 4
∴ (1 + a) (1 + b) (1 + c) (1 + d)5 4 4