Algebra


  1. If  
    4x − 3
    +
    4y − 3
    +
    4z − 3
    = 0, then the value of  
    1
    +
    1
    +
    1
      is
    xyzxyz









  1. View Hint View Answer Discuss in Forum

    4x − 3
    +
    4y − 3
    +
    4z − 3
    = 0
    xyz

    ⇒ 
    4x
    3
    +
    4y
    3
    +
    4z
    3
    = 0
    xxyyzz

    ⇒ 
    3
    +
    3
    +
    3
    = 4 + 4 + 4 = 12
    xyz

    ⇒ 
    1
    +
    1
    +
    1
    =
    12
    = 4
    xyz3

    Correct Option: C

    4x − 3
    +
    4y − 3
    +
    4z − 3
    = 0
    xyz

    ⇒ 
    4x
    3
    +
    4y
    3
    +
    4z
    3
    = 0
    xxyyzz

    ⇒ 
    3
    +
    3
    +
    3
    = 4 + 4 + 4 = 12
    xyz

    ⇒ 
    1
    +
    1
    +
    1
    =
    12
    = 4
    xyz3


  1. If   x +
    1
    = 99, find the value of
    100x
    x2x2 + 102x + 2









  1. View Hint View Answer Discuss in Forum

    x +
    1
    = 99
    x

    ∴ 
    100x
    2x2 + 102x + 2

    =
    100x
    2x2 + 2 + 102x

    On dividing by x,
    =
    100
    2x +
    2
    + 102
    x

    =
    100
    2x +
    1
    + 102
    x

    =
    100
    =
    100
    =
    1
    2 × 99 + 1023003

    Correct Option: C

    x +
    1
    = 99
    x

    ∴ 
    100x
    2x2 + 102x + 2

    =
    100x
    2x2 + 2 + 102x

    On dividing by x,
    =
    100
    2x +
    2
    + 102
    x

    =
    100
    2x +
    1
    + 102
    x

    =
    100
    =
    100
    =
    1
    2 × 99 + 1023003



  1. If x – y = 2 and x2 + y2 = 20, then value of (x + y)2 is









  1. View Hint View Answer Discuss in Forum

    (x – y)2 = x2 + y2 – 2xy
    ⇒  22 = 20 – 2xy
    ⇒  2xy = 20 – 4 = 16
    ∴  (x + y)2 = x2 + y2 + 2xy
    = 20 + 16 = 36

    Correct Option: B

    (x – y)2 = x2 + y2 – 2xy
    ⇒  22 = 20 – 2xy
    ⇒  2xy = 20 – 4 = 16
    ∴  (x + y)2 = x2 + y2 + 2xy
    = 20 + 16 = 36


  1. If   a = 2 + √3, then the value of a2 +
    1
    is :
    a2









  1. View Hint View Answer Discuss in Forum

    a = 2 + √3

    1
    =
    1
    a2 + √3

    =
    1
    ×
    2 − √3
    2 + √32 − √3

    =
    2 − √3
    = 2 − √3
    4 − 3

    ∴ a2 +
    1
    = a +
    1
    2 − 2
    a2a

    = (2 + √3 + 2 − √3)2 − 2
    = 16 – 2 = 14

    Correct Option: B

    a = 2 + √3

    1
    =
    1
    a2 + √3

    =
    1
    ×
    2 − √3
    2 + √32 − √3

    =
    2 − √3
    = 2 − √3
    4 − 3

    ∴ a2 +
    1
    = a +
    1
    2 − 2
    a2a

    = (2 + √3 + 2 − √3)2 − 2
    = 16 – 2 = 14



  1. The term to be added to 121a2 +64b to make a perfect square is









  1. View Hint View Answer Discuss in Forum

    121a2 + 64b2
    = (11a)2 + (8b)2
    ∵  (x + y)2 = x2 + y2 + 2xy
    ∴  Required expression
    = 2 × 11a × 8b = 176ab

    Correct Option: A

    121a2 + 64b2
    = (11a)2 + (8b)2
    ∵  (x + y)2 = x2 + y2 + 2xy
    ∴  Required expression
    = 2 × 11a × 8b = 176ab