Algebra


  1. If   5x +
    1
    = 10, then x2 +
    1
    is equal to
    x25x2









  1. View Hint View Answer Discuss in Forum

    5x +
    1
    = 10
    x

    On dividing by 5,
    x +
    1
    = 2
    5x

    On squaring both sides,
    x +
    1
    2 = 4
    5x

    ⇒  x2 +
    1
    + 2x ×
    1
    = 4
    25x25x

    ⇒  x2 +
    1
    = 4 −
    2
    25x25

    =
    20 − 2
    =
    18
    55

    = 3
    3
    5

    Correct Option: C

    5x +
    1
    = 10
    x

    On dividing by 5,
    x +
    1
    = 2
    5x

    On squaring both sides,
    x +
    1
    2 = 4
    5x

    ⇒  x2 +
    1
    + 2x ×
    1
    = 4
    25x25x

    ⇒  x2 +
    1
    = 4 −
    2
    25x25

    =
    20 − 2
    =
    18
    55

    = 3
    3
    5


  1. If x +
    1
    = 2 then x2 +
    1
    is equal to
    xx2









  1. View Hint View Answer Discuss in Forum

    x +
    1
    = 2
    x

    On squaring both sides,
    x +
    1
    2 = 4
    x

    ⇒  x2 +
    1
    + 2 = 4
    x2

    ⇒  x2 +
    1
    = 4 − 2 = 2
    x2

    Correct Option: B

    x +
    1
    = 2
    x

    On squaring both sides,
    x +
    1
    2 = 4
    x

    ⇒  x2 +
    1
    + 2 = 4
    x2

    ⇒  x2 +
    1
    = 4 − 2 = 2
    x2



  1. If  
    3a + 4b
    =
    3a − 4b
    , then
    3c + 4d3c − 4d









  1. View Hint View Answer Discuss in Forum

    3a + 4b
    =
    3a − 4b
    3c + 4d3c − 4d

    ⇒ 
    3a + 4b
    =
    3c + 4d
    3a − 4b3c − 4d

    By componendo and dividendo,
    3a + 4b + 3a − 4b
    =
    3c + 4d + 3c − 4d
    3a + 4b − 3a + 4b3c + 4d − 3c + 4d

    ⇒ 
    6a
    =
    6c
    8b8d

    ⇒ 
    a
    =
    c
    bd

    ⇒  ad = bc

    Correct Option: B

    3a + 4b
    =
    3a − 4b
    3c + 4d3c − 4d

    ⇒ 
    3a + 4b
    =
    3c + 4d
    3a − 4b3c − 4d

    By componendo and dividendo,
    3a + 4b + 3a − 4b
    =
    3c + 4d + 3c − 4d
    3a + 4b − 3a + 4b3c + 4d − 3c + 4d

    ⇒ 
    6a
    =
    6c
    8b8d

    ⇒ 
    a
    =
    c
    bd

    ⇒  ad = bc


  1. If  
    a
    =
    b
    =
    c
    , find the value of (pa + qb + rc).
    q − rr − pp − q









  1. View Hint View Answer Discuss in Forum

    a
    =
    b
    =
    c
    = k (let)
    q − rr − pp − q

    ⇒  a = k (q – r);
    b = k (r – p);
    c = k (p – q)
    ∴  pa + qb + rc
    = k [p (q – r) + q (r – p) + r (p – q)]
    = k (pq – pr + qr – pq + rp – qr)
    = k × 0 = 0

    Correct Option: A

    a
    =
    b
    =
    c
    = k (let)
    q − rr − pp − q

    ⇒  a = k (q – r);
    b = k (r – p);
    c = k (p – q)
    ∴  pa + qb + rc
    = k [p (q – r) + q (r – p) + r (p – q)]
    = k (pq – pr + qr – pq + rp – qr)
    = k × 0 = 0



  1. If x −
    1
    =
    1
    , the value of 3 x −
    1
    is
    3x33x









  1. View Hint View Answer Discuss in Forum

    x –
    1
    =
    1
    3x3

    ∴  3x –
    1
    = 0
    3x

    = 3 ×
    1
    = 1
    3

    Correct Option: B

    x –
    1
    =
    1
    3x3

    ∴  3x –
    1
    = 0
    3x

    = 3 ×
    1
    = 1
    3