Algebra


  1. If a + b = 17 and a – b = 9, then the value of (4a2 + 4b2) is :









  1. View Hint View Answer Discuss in Forum

    a + b = 17
    a – b = 9
    ∴  (a + b)2 + (a – b)2 = 172 + 92
    ⇒  2 (a2 + b2) = 289 + 81 = 370
    ⇒  4 (a2 + b2) = 2 × 370 = 740

    Correct Option: D

    a + b = 17
    a – b = 9
    ∴  (a + b)2 + (a – b)2 = 172 + 92
    ⇒  2 (a2 + b2) = 289 + 81 = 370
    ⇒  4 (a2 + b2) = 2 × 370 = 740


  1. If  
    a2
    =
    b2
    =
    c2
    = 1 then find the value of
    2
    +
    2
    +
    2
    .
    b + cc + aa + b1 + a1 + b1 + c









  1. View Hint View Answer Discuss in Forum

    a2
    =
    b2
    =
    c2
    = 1
    b + cc + aa + b

    ⇒ 
    a2
    = 1 ⇒ a2 = b + c
    b + c

    ⇒  a2 + a = a + b + c
    ⇒  a (a + 1) = a + b + c
    ⇒  a + 1 =
    a + b + c
    a

    ⇒ 
    1
    =
    a
    a + 1a + b + c

    Similarly,
    b2
    = 1
    c + a

    ⇒ 
    1
    =
    b
    b + 1a + b + c

    and,  
    c2
    = 1
    a + b

    ⇒ 
    1
    =
    c
    c + 1a + b + c

    ∴ 
    2
    +
    2
    +
    2
    1 + a1 + b1 + c

    = 2
    a
    +
    b
    +
    c
    a + b + ca + b + ca + b + c

    = 2
    a + b + c
    = 2
    a + b + c

    Correct Option: C

    a2
    =
    b2
    =
    c2
    = 1
    b + cc + aa + b

    ⇒ 
    a2
    = 1 ⇒ a2 = b + c
    b + c

    ⇒  a2 + a = a + b + c
    ⇒  a (a + 1) = a + b + c
    ⇒  a + 1 =
    a + b + c
    a

    ⇒ 
    1
    =
    a
    a + 1a + b + c

    Similarly,
    b2
    = 1
    c + a

    ⇒ 
    1
    =
    b
    b + 1a + b + c

    and,  
    c2
    = 1
    a + b

    ⇒ 
    1
    =
    c
    c + 1a + b + c

    ∴ 
    2
    +
    2
    +
    2
    1 + a1 + b1 + c

    = 2
    a
    +
    b
    +
    c
    a + b + ca + b + ca + b + c

    = 2
    a + b + c
    = 2
    a + b + c



  1. If   x +
    1
    = 5, then the value of
    x
    is
    x1 + x + x2









  1. View Hint View Answer Discuss in Forum

    = x +
    1
    = 5  (Given)
    x

    ∴ 
    x
    =
    x
    1 + x + x2x
    1
    + 1+ x
    x

    =
    1
    =
    1
    x +
    1
    + 15 + 1
    x

    =
    1
    6

    Correct Option: B

    = x +
    1
    = 5  (Given)
    x

    ∴ 
    x
    =
    x
    1 + x + x2x
    1
    + 1+ x
    x

    =
    1
    =
    1
    x +
    1
    + 15 + 1
    x

    =
    1
    6


  1. If   x −
    1
    = 2, then what is the value of x2 +
    1
    ?
    xx2









  1. View Hint View Answer Discuss in Forum

    x −
    1
    = 2
    x

    On squaring both sides,
    x2 +
    1
    – 2 = 4
    x2

    ⇒  x2 +
    1
    = 6
    x2

    Correct Option: D

    x −
    1
    = 2
    x

    On squaring both sides,
    x2 +
    1
    – 2 = 4
    x2

    ⇒  x2 +
    1
    = 6
    x2



  1. If   a +
    1
    = 1, then the value of
    a2 − a + 1
    is (a ≠ 0)
    aa2 + a + 1









  1. View Hint View Answer Discuss in Forum

    ⇒  a +
    1
    = 1
    a

    ⇒  a2 + 1 = a ⇒ a2 – a + 1 = 0
    ∴ 
    a2 − a + 1
    =
    0
    = 0
    a2 + a + 1a2 + a + 1

    Correct Option: C

    ⇒  a +
    1
    = 1
    a

    ⇒  a2 + 1 = a ⇒ a2 – a + 1 = 0
    ∴ 
    a2 − a + 1
    =
    0
    = 0
    a2 + a + 1a2 + a + 1