Algebra
- If a + b = 17 and a – b = 9, then the value of (4a2 + 4b2) is :
-
View Hint View Answer Discuss in Forum
a + b = 17
a – b = 9
∴ (a + b)2 + (a – b)2 = 172 + 92
⇒ 2 (a2 + b2) = 289 + 81 = 370
⇒ 4 (a2 + b2) = 2 × 370 = 740Correct Option: D
a + b = 17
a – b = 9
∴ (a + b)2 + (a – b)2 = 172 + 92
⇒ 2 (a2 + b2) = 289 + 81 = 370
⇒ 4 (a2 + b2) = 2 × 370 = 740
-
If a2 = b2 = c2 = 1 then find the value of 2 + 2 + 2 . b + c c + a a + b 1 + a 1 + b 1 + c
-
View Hint View Answer Discuss in Forum
a2 = b2 = c2 = 1 b + c c + a a + b ⇒ a2 = 1 ⇒ a2 = b + c b + c
⇒ a2 + a = a + b + c
⇒ a (a + 1) = a + b + c⇒ a + 1 = a + b + c a ⇒ 1 = a a + 1 a + b + c
Similarly,b2 = 1 c + a ⇒ 1 = b b + 1 a + b + c and, c2 = 1 a + b ⇒ 1 = c c + 1 a + b + c ∴ 2 + 2 + 2 1 + a 1 + b 1 + c = 2 a + b + c a + b + c a + b + c a + b + c = 2 a + b + c = 2 a + b + c Correct Option: C
a2 = b2 = c2 = 1 b + c c + a a + b ⇒ a2 = 1 ⇒ a2 = b + c b + c
⇒ a2 + a = a + b + c
⇒ a (a + 1) = a + b + c⇒ a + 1 = a + b + c a ⇒ 1 = a a + 1 a + b + c
Similarly,b2 = 1 c + a ⇒ 1 = b b + 1 a + b + c and, c2 = 1 a + b ⇒ 1 = c c + 1 a + b + c ∴ 2 + 2 + 2 1 + a 1 + b 1 + c = 2 a + b + c a + b + c a + b + c a + b + c = 2 a + b + c = 2 a + b + c
-
If x + 1 = 5, then the value of x is x 1 + x + x2
-
View Hint View Answer Discuss in Forum
= x + 1 = 5 (Given) x ∴ x = x 1 + x + x2 x 1 + 1+ x x = 1 = 1 x + 1 + 1 5 + 1 x = 1 6 Correct Option: B
= x + 1 = 5 (Given) x ∴ x = x 1 + x + x2 x 1 + 1+ x x = 1 = 1 x + 1 + 1 5 + 1 x = 1 6
-
If x − 1 = 2, then what is the value of x2 + 1 ? x x2
-
View Hint View Answer Discuss in Forum
x − 1 = 2 x
On squaring both sides,x2 + 1 – 2 = 4 x2 ⇒ x2 + 1 = 6 x2 Correct Option: D
x − 1 = 2 x
On squaring both sides,x2 + 1 – 2 = 4 x2 ⇒ x2 + 1 = 6 x2
-
If a + 1 = 1, then the value of a2 − a + 1 is (a ≠ 0) a a2 + a + 1
-
View Hint View Answer Discuss in Forum
⇒ a + 1 = 1 a
⇒ a2 + 1 = a ⇒ a2 – a + 1 = 0∴ a2 − a + 1 = 0 = 0 a2 + a + 1 a2 + a + 1 Correct Option: C
⇒ a + 1 = 1 a
⇒ a2 + 1 = a ⇒ a2 – a + 1 = 0∴ a2 − a + 1 = 0 = 0 a2 + a + 1 a2 + a + 1