Algebra
-
If a + 1 = 3 then a3 + 1 + 1 is a a3
-
View Hint View Answer Discuss in Forum
a + 1 = 3 a
On cubing both sides,⇒ a + 1 3 = 33 = 27 a ⇒ a3 + 1 + 3 × a × 1 a + 1 = 27 a3 a a ⇒ a3 + 1 + 3 × 3 = 27 a3 ⇒ a3 + 1 = 27 - 9 = 18 a3 ∴ a3 + 1 + 1 = 18 + 1 = 19 a3 Correct Option: C
a + 1 = 3 a
On cubing both sides,⇒ a + 1 3 = 33 = 27 a ⇒ a3 + 1 + 3 × a × 1 a + 1 = 27 a3 a a ⇒ a3 + 1 + 3 × 3 = 27 a3 ⇒ a3 + 1 = 27 - 9 = 18 a3 ∴ a3 + 1 + 1 = 18 + 1 = 19 a3
- If x * y = (x + 3)2 (y –1), then the value of 5 * 4 is
-
View Hint View Answer Discuss in Forum
x ★ y = (x + 3)2 (y – 1)
∴ 5 ★ 4 = (5 + 3)2 (4 – 1)
= 64 × 3 = 192Correct Option: A
x ★ y = (x + 3)2 (y – 1)
∴ 5 ★ 4 = (5 + 3)2 (4 – 1)
= 64 × 3 = 192
- If √2x = 256 , then the value of x is
-
View Hint View Answer Discuss in Forum
√2x = 256
⇒ 2x/2 = 28⇒ x = 8 ⇒ x = 16 2 Correct Option: B
√2x = 256
⇒ 2x/2 = 28⇒ x = 8 ⇒ x = 16 2
- If (√5)7 ÷ (√5)5 = 5p, then the value of p is
-
View Hint View Answer Discuss in Forum
(√5)7 = 5p (√5)5
⇒ (√5)7 − 5 = 5p
⇒ (√5)2 = 5p
⇒ 51 = 5p ⇒ p = 1Correct Option: D
(√5)7 = 5p (√5)5
⇒ (√5)7 − 5 = 5p
⇒ (√5)2 = 5p
⇒ 51 = 5p ⇒ p = 1
- If a b = 2a + 3b – ab, then the value of (3 5 + 5 3) is
-
View Hint View Answer Discuss in Forum
Given that
a ★ b = 2a + 3b – ab
∴ 3 ★ 5 + 5 ★ 3
= (2 × 3 + 3 × 5 – 3 × 5) + (5 × 2 + 3 × 3 – 5 × 3)
= (6 + 15 – 15) + (10 + 9 – 15)
= 6 + 4 = 10Correct Option: A
Given that
a ★ b = 2a + 3b – ab
∴ 3 ★ 5 + 5 ★ 3
= (2 × 3 + 3 × 5 – 3 × 5) + (5 × 2 + 3 × 3 – 5 × 3)
= (6 + 15 – 15) + (10 + 9 – 15)
= 6 + 4 = 10