Algebra


  1. If x1 / 3 + y1 / 3 = z1 / 3 , then {(x + y – z)3 + 27xyz} equals :









  1. View Hint View Answer Discuss in Forum

    Using Rule 8,
    x1 / 3 + y1 / 3 = z1 / 3 ......(i)
    Cubing both sides,
    ( x1 / 3 + y1 / 3 = z1 / 3 )3 = z
    ⇒ x + y + 3 x1 / 3 . y1 / 3 ( 1 / 3 + y1 / 3 ) = z
    [∴ (a + b)3 = a3 + b3 + 3ab (a + b)]
    ⇒ x + y – z = - 3 x1 / 3 . y1 / 3 .z1 / 3 ......(ii) [From equation (i)]
    ∴ (x + y – z)3 + 27xyz = [ - 3x1 / 3 . y1 / 3 . z1 / 3 ]3 + 27xyz [From equation (ii)]
    = – 27xyz + 27xyz = 0

    Correct Option: C

    Using Rule 8,
    x1 / 3 + y1 / 3 = z1 / 3 ......(i)
    Cubing both sides,
    ( x1 / 3 + y1 / 3 = z1 / 3 )3 = z
    ⇒ x + y + 3 x1 / 3 . y1 / 3 ( 1 / 3 + y1 / 3 ) = z
    [∴ (a + b)3 = a3 + b3 + 3ab (a + b)]
    ⇒ x + y – z = - 3 x1 / 3 . y1 / 3 .z1 / 3 ......(ii) [From equation (i)]
    ∴ (x + y – z)3 + 27xyz = [ - 3x1 / 3 . y1 / 3 . z1 / 3 ]3 + 27xyz [From equation (ii)]
    = – 27xyz + 27xyz = 0


  1. If x + y = 7, then the value of x3 + y3 + 21xy is









  1. View Hint View Answer Discuss in Forum

    Using Rule 8,
    Given, x + y = 7
    Now, x3 + y3 + 21xy = (x + y)3 – 3xy(x + y) + 21xy
    = (7)3 – 3xy(7) + 21xy
    = 343 – 21xy + 21xy = 343

    Correct Option: C

    Using Rule 8,
    Given, x + y = 7
    Now, x3 + y3 + 21xy = (x + y)3 – 3xy(x + y) + 21xy
    = (7)3 – 3xy(7) + 21xy
    = 343 – 21xy + 21xy = 343



  1. If x = √3 + √2 , then the value of x3 +
    1
      is
    x3











  1. View Hint View Answer Discuss in Forum

    Using Rule 8,
    x = √3 + √2

    1
    =
    1
    x3 + √2

    1
    =
    1
    ×
    3 - √2
    x3 + √2 3 - √2

    1
    =
    3 - √2
    = √3 - √2
    x3 - 2

    ∴ x +
    1
    = √3 + √2 + √3 - √2
    x

    ⇒ x +
    1
    = 2√3
    x

    x3 +
    1
    = x +
    1
    3 - 3x .
    1
    x +
    1
    x3xxx

    = ( 2√3 )3 - 3( 2√3 )
    = 24√3 - 6√3 = 18√3

    Correct Option: C

    Using Rule 8,
    x = √3 + √2

    1
    =
    1
    x3 + √2

    1
    =
    1
    ×
    3 - √2
    x3 + √2 3 - √2

    1
    =
    3 - √2
    = √3 - √2
    x3 - 2

    ∴ x +
    1
    = √3 + √2 + √3 - √2
    x

    ⇒ x +
    1
    = 2√3
    x

    x3 +
    1
    = x +
    1
    3 - 3x .
    1
    x +
    1
    x3xxx

    = ( 2√3 )3 - 3( 2√3 )
    = 24√3 - 6√3 = 18√3


  1. If x + y + z = 6, then the value of (x – 1)3 + (y – 2)3 + (z – 3)3 is









  1. View Hint View Answer Discuss in Forum

    Using Rule 21,
    x + y + z = 6
    ⇒ x + y + z – 6 = 0
    ⇒ (x – 1) + (y – 2) + (z – 3) = 0
    If a + b + c = 0, then a3 + b3 + c3 = 3abc
    ∴ (x – 1)3 + (y – 2)3 + (z – 3)3 = 3 (x – 1) (y – 2) (z – 3)

    Correct Option: D

    Using Rule 21,
    x + y + z = 6
    ⇒ x + y + z – 6 = 0
    ⇒ (x – 1) + (y – 2) + (z – 3) = 0
    If a + b + c = 0, then a3 + b3 + c3 = 3abc
    ∴ (x – 1)3 + (y – 2)3 + (z – 3)3 = 3 (x – 1) (y – 2) (z – 3)



  1. If x + y + z = 6 and x2 + y2 + z2= 20 then the value of x3 + y3 + z3 – 3xyz is









  1. View Hint View Answer Discuss in Forum

    x + y + z = 6
    On squaring,
    x2 + y2 + z2 + 2xy + 2zy + 2zx = 36
    ⇒ 20 + 2 (xy + yz + zx) = 36
    ⇒ xy + yz + zx = 8
    ∴ x3 + y3 + z3 – 3xyz = (x + y + z)(x2 + y2 + z2 – xy – yz – zx)
    = 6 (20 – 8)
    = 72

    Correct Option: C

    x + y + z = 6
    On squaring,
    x2 + y2 + z2 + 2xy + 2zy + 2zx = 36
    ⇒ 20 + 2 (xy + yz + zx) = 36
    ⇒ xy + yz + zx = 8
    ∴ x3 + y3 + z3 – 3xyz = (x + y + z)(x2 + y2 + z2 – xy – yz – zx)
    = 6 (20 – 8)
    = 72