Algebra
- If x1 / 3 + y1 / 3 = z1 / 3 , then {(x + y – z)3 + 27xyz} equals :
-
View Hint View Answer Discuss in Forum
Using Rule 8,
x1 / 3 + y1 / 3 = z1 / 3 ......(i)
Cubing both sides,
( x1 / 3 + y1 / 3 = z1 / 3 )3 = z
⇒ x + y + 3 x1 / 3 . y1 / 3 ( 1 / 3 + y1 / 3 ) = z
[∴ (a + b)3 = a3 + b3 + 3ab (a + b)]
⇒ x + y – z = - 3 x1 / 3 . y1 / 3 .z1 / 3 ......(ii) [From equation (i)]
∴ (x + y – z)3 + 27xyz = [ - 3x1 / 3 . y1 / 3 . z1 / 3 ]3 + 27xyz [From equation (ii)]
= – 27xyz + 27xyz = 0Correct Option: C
Using Rule 8,
x1 / 3 + y1 / 3 = z1 / 3 ......(i)
Cubing both sides,
( x1 / 3 + y1 / 3 = z1 / 3 )3 = z
⇒ x + y + 3 x1 / 3 . y1 / 3 ( 1 / 3 + y1 / 3 ) = z
[∴ (a + b)3 = a3 + b3 + 3ab (a + b)]
⇒ x + y – z = - 3 x1 / 3 . y1 / 3 .z1 / 3 ......(ii) [From equation (i)]
∴ (x + y – z)3 + 27xyz = [ - 3x1 / 3 . y1 / 3 . z1 / 3 ]3 + 27xyz [From equation (ii)]
= – 27xyz + 27xyz = 0
- If x + y = 7, then the value of x3 + y3 + 21xy is
-
View Hint View Answer Discuss in Forum
Using Rule 8,
Given, x + y = 7
Now, x3 + y3 + 21xy = (x + y)3 – 3xy(x + y) + 21xy
= (7)3 – 3xy(7) + 21xy
= 343 – 21xy + 21xy = 343Correct Option: C
Using Rule 8,
Given, x + y = 7
Now, x3 + y3 + 21xy = (x + y)3 – 3xy(x + y) + 21xy
= (7)3 – 3xy(7) + 21xy
= 343 – 21xy + 21xy = 343
-
If x = √3 + √2 , then the value of x3 + 1 is x3
-
View Hint View Answer Discuss in Forum
Using Rule 8,
x = √3 + √2∴ 1 = 1 x √3 + √2 ⇒ 1 = 1 × √3 - √2 x √3 + √2 √3 - √2 ⇒ 1 = √3 - √2 = √3 - √2 x 3 - 2 ∴ x + 1 = √3 + √2 + √3 - √2 x ⇒ x + 1 = 2√3 x x3 + 1 = x + 1 3 - 3x . 1 x + 1 x3 x x x
= ( 2√3 )3 - 3( 2√3 )
= 24√3 - 6√3 = 18√3Correct Option: C
Using Rule 8,
x = √3 + √2∴ 1 = 1 x √3 + √2 ⇒ 1 = 1 × √3 - √2 x √3 + √2 √3 - √2 ⇒ 1 = √3 - √2 = √3 - √2 x 3 - 2 ∴ x + 1 = √3 + √2 + √3 - √2 x ⇒ x + 1 = 2√3 x x3 + 1 = x + 1 3 - 3x . 1 x + 1 x3 x x x
= ( 2√3 )3 - 3( 2√3 )
= 24√3 - 6√3 = 18√3
- If x + y + z = 6, then the value of (x – 1)3 + (y – 2)3 + (z – 3)3 is
-
View Hint View Answer Discuss in Forum
Using Rule 21,
x + y + z = 6
⇒ x + y + z – 6 = 0
⇒ (x – 1) + (y – 2) + (z – 3) = 0
If a + b + c = 0, then a3 + b3 + c3 = 3abc
∴ (x – 1)3 + (y – 2)3 + (z – 3)3 = 3 (x – 1) (y – 2) (z – 3)Correct Option: D
Using Rule 21,
x + y + z = 6
⇒ x + y + z – 6 = 0
⇒ (x – 1) + (y – 2) + (z – 3) = 0
If a + b + c = 0, then a3 + b3 + c3 = 3abc
∴ (x – 1)3 + (y – 2)3 + (z – 3)3 = 3 (x – 1) (y – 2) (z – 3)
- If x + y + z = 6 and x2 + y2 + z2= 20 then the value of x3 + y3 + z3 – 3xyz is
-
View Hint View Answer Discuss in Forum
x + y + z = 6
On squaring,
x2 + y2 + z2 + 2xy + 2zy + 2zx = 36
⇒ 20 + 2 (xy + yz + zx) = 36
⇒ xy + yz + zx = 8
∴ x3 + y3 + z3 – 3xyz = (x + y + z)(x2 + y2 + z2 – xy – yz – zx)
= 6 (20 – 8)
= 72Correct Option: C
x + y + z = 6
On squaring,
x2 + y2 + z2 + 2xy + 2zy + 2zx = 36
⇒ 20 + 2 (xy + yz + zx) = 36
⇒ xy + yz + zx = 8
∴ x3 + y3 + z3 – 3xyz = (x + y + z)(x2 + y2 + z2 – xy – yz – zx)
= 6 (20 – 8)
= 72