Algebra


  1. If  
    x
    =
    1
    , then the value of   x +
    1
      is :
    2x2 + 5x + 26x









  1. View Hint View Answer Discuss in Forum

    x
    =
    1
    2x2 + 5x + 26

    ⇒  2x2 + 5x + 2 = 6x
    ⇒  2x2 + 2 = 6x – 5x = x
    ⇒  x2 + 1 =
    x
    2

    On dividing by x,
    ⇒  x +
    1
    =
    1
    x2

    Correct Option: B

    x
    =
    1
    2x2 + 5x + 26

    ⇒  2x2 + 5x + 2 = 6x
    ⇒  2x2 + 2 = 6x – 5x = x
    ⇒  x2 + 1 =
    x
    2

    On dividing by x,
    ⇒  x +
    1
    =
    1
    x2


  1. If (3a + 1)2 + (b – 1)2 + (2c – 3)2 = 0, then the value of (3a + b + 2c) is equal to :









  1. View Hint View Answer Discuss in Forum

    (3a + 1)2 + (b – 1)2 + (2c–3)2 = 0
    ⇒  3a + 1 = 0
    ⇒  3a = –1
    b – 1 = 0
    ⇒  b = 1
    2c – 3 = 0
    ⇒  2c = 3
    ∴  3a + b + 2c = –1 + 1 + 3 = 3

    Correct Option: A

    (3a + 1)2 + (b – 1)2 + (2c–3)2 = 0
    ⇒  3a + 1 = 0
    ⇒  3a = –1
    b – 1 = 0
    ⇒  b = 1
    2c – 3 = 0
    ⇒  2c = 3
    ∴  3a + b + 2c = –1 + 1 + 3 = 3



  1. The value of the expression  
    (a − b)2
    +
    (b − c)2
    +
    (c − a)2
    is :
    (b − c)(c − a)(a − b)(c − a)(a − b)(b − c)









  1. View Hint View Answer Discuss in Forum

    (a − b)2
    +
    (b − c)2
    +
    (c − a)2
    (b − c)(c − a)(a − b)(c − a)(a − b)(b − c)

    =
    (a − b)3
    +
    (b − c)3
    +
    (c − a)3
    (a − b)(b − c)(c − a)(a − b)(b − c)(c − a)(a − b)(b − c)(c − a)

    =
    (a − b)3 +(b − c)3 + (c − a)3
    (a − b)(b − c)(c − a)

    [∵  [a – b + b – c + c – a = 0]]
    =
    3(a − b)(b − c) (c − a)
    = 3
    (a − b)(b − c)(c − a)

    [a + b + x = 0,
    ∵  a3 + b3 + c3 = 3abc]

    Correct Option: B

    (a − b)2
    +
    (b − c)2
    +
    (c − a)2
    (b − c)(c − a)(a − b)(c − a)(a − b)(b − c)

    =
    (a − b)3
    +
    (b − c)3
    +
    (c − a)3
    (a − b)(b − c)(c − a)(a − b)(b − c)(c − a)(a − b)(b − c)(c − a)

    =
    (a − b)3 +(b − c)3 + (c − a)3
    (a − b)(b − c)(c − a)

    [∵  [a – b + b – c + c – a = 0]]
    =
    3(a − b)(b − c) (c − a)
    = 3
    (a − b)(b − c)(c − a)

    [a + b + x = 0,
    ∵  a3 + b3 + c3 = 3abc]


  1. Out of the given responses, one of the factors of (a2 - b2)3 + (b2 - c2)3 + (c2 - a2)3 is









  1. View Hint View Answer Discuss in Forum

    a2 - b2 + b2 - c2 + c2 - a2 = 0
    [ If x + y + z = 0 , x3 + y3 + z3 = 3xyz ]
    ∴ (a2 - b2)3 + (b2 - c2)3 + (c2 - a2)3 = 3(a2 - b2)(b2 - c2)(c2 - a2)
    ⇒ (a2 - b2)3 + (b2 - c2)3 + (c2 - a2)3 = 3 (a + b) (a – b) (b + c) (b – c) (c + a) (c – a)

    Correct Option: A

    a2 - b2 + b2 - c2 + c2 - a2 = 0
    [ If x + y + z = 0 , x3 + y3 + z3 = 3xyz ]
    ∴ (a2 - b2)3 + (b2 - c2)3 + (c2 - a2)3 = 3(a2 - b2)(b2 - c2)(c2 - a2)
    ⇒ (a2 - b2)3 + (b2 - c2)3 + (c2 - a2)3 = 3 (a + b) (a – b) (b + c) (b – c) (c + a) (c – a)



  1. If the sum of 
    a
      and its reciprocal is 1 and a ≠ 0, b ≠ 0, then the value of a3 + b3 is
    b










  1. View Hint View Answer Discuss in Forum

    According to question,

    a
    +
    b
    = 1
    aa

    ⇒ a2 + b2 = ab
    ⇒ a2 – ab + b2 = 0
    ∴ a3 + b3 = (a + b)( a2 – ab + b2 ) = 0

    Correct Option: C

    According to question,

    a
    +
    b
    = 1
    aa

    ⇒ a2 + b2 = ab
    ⇒ a2 – ab + b2 = 0
    ∴ a3 + b3 = (a + b)( a2 – ab + b2 ) = 0