Algebra


  1. If   x +
    1
    = 5, then the value of
    5x
    is :
    xx2 + 5x + 1









  1. View Hint View Answer Discuss in Forum

    It is given,   x +
    1
    = 5
    x

    Expression =
    5x
    x2 + 5x + 1

    =
    5x
    xx + 5 +
    1
    x

    =
    5
    x +
    1
    + 5
    x

    =
    5
    =
    5
    =
    1
    5 + 5102

    Correct Option: C

    It is given,   x +
    1
    = 5
    x

    Expression =
    5x
    x2 + 5x + 1

    =
    5x
    xx + 5 +
    1
    x

    =
    5
    x +
    1
    + 5
    x

    =
    5
    =
    5
    =
    1
    5 + 5102


  1. If  
    2 + a
    +
    2 + b
    +
    2 + c
    = 4, then the value of
    ab + bc + ca
    is
    abcabc









  1. View Hint View Answer Discuss in Forum

    2 + a
    +
    2 + b
    +
    2 + c
    = 4
    abc

    ⇒ 
    2
    + 1 +
    2
    + 1 +
    2
    + 1 = 4
    abc

    ⇒ 
    2
    +
    2
    +
    2
    = 4 – 3 = 1
    abc

    ⇒ 
    1
    +
    1
    +
    1
    =
    1
    abc2

    ⇒ 
    bc + ca + ab
    =
    1
    abc2

    Correct Option: D

    2 + a
    +
    2 + b
    +
    2 + c
    = 4
    abc

    ⇒ 
    2
    + 1 +
    2
    + 1 +
    2
    + 1 = 4
    abc

    ⇒ 
    2
    +
    2
    +
    2
    = 4 – 3 = 1
    abc

    ⇒ 
    1
    +
    1
    +
    1
    =
    1
    abc2

    ⇒ 
    bc + ca + ab
    =
    1
    abc2



  1. If x2 – 3x + 1 = 0, (x ≠ 0), then the value ofx +
    1
    is
    x









  1. View Hint View Answer Discuss in Forum

    x2 – 3x + 1 = 0
    ⇒  x2 + 1 = 3x
    On dividing by x,

    x2 + 1
    =
    3x
    xx

    ⇒  x +
    1
    = 3
    x

    Correct Option: C

    x2 – 3x + 1 = 0
    ⇒  x2 + 1 = 3x
    On dividing by x,

    x2 + 1
    =
    3x
    xx

    ⇒  x +
    1
    = 3
    x


  1. If x +
    1
    = 6, then value of x2 +
    1
    is :
    x









  1. View Hint View Answer Discuss in Forum

    x +
    1
    = 6
    x

    On squaring both sides,
    x +
    1
    2 = 36
    x

    ⇒  x2 +
    1
    + 2 = 36
    x2

    ⇒  x2 +
    1
    = 36 – 2 = 34
    x2

    Correct Option: C

    x +
    1
    = 6
    x

    On squaring both sides,
    x +
    1
    2 = 36
    x

    ⇒  x2 +
    1
    + 2 = 36
    x2

    ⇒  x2 +
    1
    = 36 – 2 = 34
    x2



  1. If a (x + y) = b(x – y) = 2ab, then the value of 2 (x2 + y2) is :









  1. View Hint View Answer Discuss in Forum

    a (x + y) = b (x – y)
    ⇒  ax – bx = – by – ay
    ⇒  bx – ax = ay + by
    ⇒  x (b – a) = y (a + b)

    ⇒ 
    x
    =
    y
    a + bb − a

    =
    x2 + y2
    =
    x2 + y2
    (a + b)2(b − a)22(a2 + b2)

    ∴  2(x2 + y2) = 4(a2 + b2)

    Correct Option: D

    a (x + y) = b (x – y)
    ⇒  ax – bx = – by – ay
    ⇒  bx – ax = ay + by
    ⇒  x (b – a) = y (a + b)

    ⇒ 
    x
    =
    y
    a + bb − a

    =
    x2 + y2
    =
    x2 + y2
    (a + b)2(b − a)22(a2 + b2)

    ∴  2(x2 + y2) = 4(a2 + b2)