Algebra
-
If x = √5 + 1 and y = √5 − 1 , then the value of x2 + xy + y2 is √5 − 1 √5 + 1 x2 − xy + y2
-
View Hint View Answer Discuss in Forum
x = √5 + 1 √5 − 1 = (√5 + 1)2 (√5 − 1)(√5 + 1)
(Rationalising the denominator)= 5 + 1 + 2√5 5 − 1 = 6 + 2√5 4 = 3 + √5 2 ∴ y = √5 − 1 = 3 − √5 √5 + 1 2 ∴ x + y = 3 + √5 + 3 − √5 2 2 = 3 + √5 + 3 − √5 = 3 2 xy = 3 + √5 + × 3 − √5 2 2 = 9 − 5 = 1 4 ∴ x2 + xy + y2 = (x + y)2 − xy x2 − xy + y2 (x + y)2 − 3xy = (3)2 − 1 = 9 − 1 = 8 = 4 (3)2 − 3 9 − 3 6 3 Correct Option: B
x = √5 + 1 √5 − 1 = (√5 + 1)2 (√5 − 1)(√5 + 1)
(Rationalising the denominator)= 5 + 1 + 2√5 5 − 1 = 6 + 2√5 4 = 3 + √5 2 ∴ y = √5 − 1 = 3 − √5 √5 + 1 2 ∴ x + y = 3 + √5 + 3 − √5 2 2 = 3 + √5 + 3 − √5 = 3 2 xy = 3 + √5 + × 3 − √5 2 2 = 9 − 5 = 1 4 ∴ x2 + xy + y2 = (x + y)2 − xy x2 − xy + y2 (x + y)2 − 3xy = (3)2 − 1 = 9 − 1 = 8 = 4 (3)2 − 3 9 − 3 6 3
- Let 0 < x < 1. Then the correct inequality is
-
View Hint View Answer Discuss in Forum
Given,
0 < x < 1
⇒ x.0 < x.x < 1.x
⇒ 0 < x2 < x
Again, x < 1
⇒ √x < 1
∴ x2 < x < √xCorrect Option: C
Given,
0 < x < 1
⇒ x.0 < x.x < 1.x
⇒ 0 < x2 < x
Again, x < 1
⇒ √x < 1
∴ x2 < x < √x
- If a + b = 10 and ab = 21, then the value of (a – b)2 is
-
View Hint View Answer Discuss in Forum
a + b = 10 ;
ab = 21
∴ (a – b)2 = (a + b)2 – 4ab
= (10)2 – 4 × 21
= 100 – 84 = 16Correct Option: B
a + b = 10 ;
ab = 21
∴ (a – b)2 = (a + b)2 – 4ab
= (10)2 – 4 × 21
= 100 – 84 = 16
-
If 2x + 1 = 5, the value of 5x is 3x 6x2 + 20x + 1
-
View Hint View Answer Discuss in Forum
2x + 1 = 5 3x ⇒ 6x2 + 1 = 5 3x
⇒ 6x2 + 1 = 15x∴ 5x 6x2 + 20x + 1 = 5x 6x2 + 1 + 20x = 5x 15x + 20x = 5x = 1 35x 7 Correct Option: D
2x + 1 = 5 3x ⇒ 6x2 + 1 = 5 3x
⇒ 6x2 + 1 = 15x∴ 5x 6x2 + 20x + 1 = 5x 6x2 + 1 + 20x = 5x 15x + 20x = 5x = 1 35x 7
-
If x = √a + 1 , y = √a − 1 (a > 0), then the value of (x4 + y4 – 2x2y2) is √a √a
-
View Hint View Answer Discuss in Forum
x = √a + 1 , y = √a − 1 √a √a ∴ x + y = √a + 1 + √a − 1 √a √a
= 2√a∴ x − y = √a + 1 − √a + 1 √a √a = 2 √a
Now,
x4 + y4 – 2x2y2
= (x2 – y2)2
= {(x + y) (x – y)}22√a × 1 2 = 42 = 16 √a Correct Option: A
x = √a + 1 , y = √a − 1 √a √a ∴ x + y = √a + 1 + √a − 1 √a √a
= 2√a∴ x − y = √a + 1 − √a + 1 √a √a = 2 √a
Now,
x4 + y4 – 2x2y2
= (x2 – y2)2
= {(x + y) (x – y)}22√a × 1 2 = 42 = 16 √a