Algebra


  1. If   x =
    5 + 1
    and y =
    5 − 1
    , then the value of
    x2 + xy + y2
    is
    5 − 15 + 1x2 − xy + y2









  1. View Hint View Answer Discuss in Forum

    x =
    5 + 1
    5 − 1

    =
    (√5 + 1)2
    (√5 − 1)(√5 + 1)

    (Rationalising the denominator)
    =
    5 + 1 + 2√5
    5 − 1

    =
    6 + 2√5
    4

    =
    3 + √5
    2

    ∴  y =
    5 − 1
    =
    3 − √5
    5 + 12

    ∴  x + y =
    3 + √5
    +
    3 − √5
    22

    =
    3 + √5 + 3 − √5
    = 3
    2

    xy =
    3 + √5 +
    ×
    3 − √5
    22

    =
    9 − 5
    = 1
    4

    ∴ 
    x2 + xy + y2
    =
    (x + y)2 − xy
    x2 − xy + y2(x + y)2 − 3xy

    =
    (3)2 − 1
    =
    9 − 1
    =
    8
    =
    4
    (3)2 − 39 − 363

    Correct Option: B

    x =
    5 + 1
    5 − 1

    =
    (√5 + 1)2
    (√5 − 1)(√5 + 1)

    (Rationalising the denominator)
    =
    5 + 1 + 2√5
    5 − 1

    =
    6 + 2√5
    4

    =
    3 + √5
    2

    ∴  y =
    5 − 1
    =
    3 − √5
    5 + 12

    ∴  x + y =
    3 + √5
    +
    3 − √5
    22

    =
    3 + √5 + 3 − √5
    = 3
    2

    xy =
    3 + √5 +
    ×
    3 − √5
    22

    =
    9 − 5
    = 1
    4

    ∴ 
    x2 + xy + y2
    =
    (x + y)2 − xy
    x2 − xy + y2(x + y)2 − 3xy

    =
    (3)2 − 1
    =
    9 − 1
    =
    8
    =
    4
    (3)2 − 39 − 363


  1. Let 0 < x < 1. Then the correct inequality is









  1. View Hint View Answer Discuss in Forum

    Given,
    0 < x < 1
    ⇒  x.0 < x.x < 1.x
    ⇒  0 < x2 < x
    Again, x < 1
    ⇒  √x < 1
    ∴  x2 < x < √x

    Correct Option: C

    Given,
    0 < x < 1
    ⇒  x.0 < x.x < 1.x
    ⇒  0 < x2 < x
    Again, x < 1
    ⇒  √x < 1
    ∴  x2 < x < √x



  1. If a + b = 10 and ab = 21, then the value of (a – b)2 is









  1. View Hint View Answer Discuss in Forum

    a + b = 10 ;
    ab = 21
    ∴  (a – b)2 = (a + b)2 – 4ab
    = (10)2 – 4 × 21
    = 100 – 84 = 16

    Correct Option: B

    a + b = 10 ;
    ab = 21
    ∴  (a – b)2 = (a + b)2 – 4ab
    = (10)2 – 4 × 21
    = 100 – 84 = 16


  1. If   2x +
    1
    = 5, the value of
    5x
    is
    3x6x2 + 20x + 1









  1. View Hint View Answer Discuss in Forum

    2x +
    1
    = 5
    3x

    ⇒ 
    6x2 + 1
    = 5
    3x

    ⇒  6x2 + 1 = 15x
    ∴ 
    5x
    6x2 + 20x + 1

    =
    5x
    6x2 + 1 + 20x

    =
    5x
    15x + 20x

    =
    5x
    =
    1
    35x7

    Correct Option: D

    2x +
    1
    = 5
    3x

    ⇒ 
    6x2 + 1
    = 5
    3x

    ⇒  6x2 + 1 = 15x
    ∴ 
    5x
    6x2 + 20x + 1

    =
    5x
    6x2 + 1 + 20x

    =
    5x
    15x + 20x

    =
    5x
    =
    1
    35x7



  1. If   x = √a +
    1
    , y = √a
    1
    (a > 0), then the value of (x4 + y4 – 2x2y2) is
    aa









  1. View Hint View Answer Discuss in Forum

    x = √a +
    1
    ,   y = √a
    1
    aa

    ∴  x + y = √a +
    1
    + √a
    1
    aa

    = 2√a
    ∴  x − y = √a +
    1
    − √a +
    1
    aa

    =
    2
    a

    Now,
    x4 + y4 – 2x2y2
    = (x2 – y2)2
    = {(x + y) (x – y)}2
    2√a ×
    1
    2 = 42 = 16
    a

    Correct Option: A

    x = √a +
    1
    ,   y = √a
    1
    aa

    ∴  x + y = √a +
    1
    + √a
    1
    aa

    = 2√a
    ∴  x − y = √a +
    1
    − √a +
    1
    aa

    =
    2
    a

    Now,
    x4 + y4 – 2x2y2
    = (x2 – y2)2
    = {(x + y) (x – y)}2
    2√a ×
    1
    2 = 42 = 16
    a