Algebra


  1. If   x = 7 – 4√3 , then √x +
    1
      is equal to :
    x









  1. View Hint View Answer Discuss in Forum

    x = 7 – 4√3
    ∴  √x = √7 – 4√3
    = √7 – 2 × 2 × √3
    = √4 + 3 − 2 × 2 × √3
    = √(2 − √3)2 = 2 − √3

    ∴ 
    1
    =
    1
    x2 − √3

    =
    1
    ×
    2 + √3
    =
    2 + √3
    2 − √32 + √34 − 3

    = 2 + √3
    ∴  √x +
    1
    = 2 − √3 + 2 + √3 = 4
    x

    Correct Option: D

    x = 7 – 4√3
    ∴  √x = √7 – 4√3
    = √7 – 2 × 2 × √3
    = √4 + 3 − 2 × 2 × √3
    = √(2 − √3)2 = 2 − √3

    ∴ 
    1
    =
    1
    x2 − √3

    =
    1
    ×
    2 + √3
    =
    2 + √3
    2 − √32 + √34 − 3

    = 2 + √3
    ∴  √x +
    1
    = 2 − √3 + 2 + √3 = 4
    x


  1. If (a – 1)2 + (b + 2)2 + (c + 1)2 = 0, then the value of 2a – 3b + 7c is









  1. View Hint View Answer Discuss in Forum

    (a – 1)2 + (b + 2)2 + (c + 1)2 = 0
    ⇒  a – 1 = 0 ⇒ a = 1;
    b + 2 = 0 ⇒ b = –2
    c + 1 = 0 ⇒ c = –1
    ∴  2a – 3b + 7c
    = 2 – 3 (– 2) + 7 (–1)
    = 2 + 6 – 7 = 1

    Correct Option: D

    (a – 1)2 + (b + 2)2 + (c + 1)2 = 0
    ⇒  a – 1 = 0 ⇒ a = 1;
    b + 2 = 0 ⇒ b = –2
    c + 1 = 0 ⇒ c = –1
    ∴  2a – 3b + 7c
    = 2 – 3 (– 2) + 7 (–1)
    = 2 + 6 – 7 = 1



  1. If   2x +
    1
    = 5,   find the value of  
    5x
    .
    3x6x2 + 20x + 1









  1. View Hint View Answer Discuss in Forum

    2x +
    1
    = 5
    3x

    ⇒  6x2 + 1 = 15x
    ⇒  6x2 + 20x + 1 = 15x + 20x = 35x
    ⇒ 
    5x
    =
    5x
    =
    1
    6x2 + 20x + 135x7

    Correct Option: D

    2x +
    1
    = 5
    3x

    ⇒  6x2 + 1 = 15x
    ⇒  6x2 + 20x + 1 = 15x + 20x = 35x
    ⇒ 
    5x
    =
    5x
    =
    1
    6x2 + 20x + 135x7


  1. If x varies inversely as (y2 – 1) and is equal to 24 when y = 10, then the value of x when y = 5 is









  1. View Hint View Answer Discuss in Forum

    x ∝
    1
    y2 − 1

    ⇒  x =
    k
    y2 − 1

    Where k is a constant.
    When y = 10, x = 24, then
    ∴  24 =
    k
    ⇒ 24 =
    k
    y2 − 199

    ⇒  k = 24 × 99
    When y = 5, then
    ∴  x =
    k
    =
    24 × 99
    =
    24 × 99
    = 99
    y2 − 152 − 124

    Correct Option: A

    x ∝
    1
    y2 − 1

    ⇒  x =
    k
    y2 − 1

    Where k is a constant.
    When y = 10, x = 24, then
    ∴  24 =
    k
    ⇒ 24 =
    k
    y2 − 199

    ⇒  k = 24 × 99
    When y = 5, then
    ∴  x =
    k
    =
    24 × 99
    =
    24 × 99
    = 99
    y2 − 152 − 124



  1. If  
    x
    =
    1
    1
      then the value of x – x2 is :
    aax









  1. View Hint View Answer Discuss in Forum

    x
    =
    1
    1
    aax

    ⇒ 
    x
    =
    x − a
    aax

    ⇒ x2 = x − a
    ⇒  x − x2 = a

    Correct Option: D

    x
    =
    1
    1
    aax

    ⇒ 
    x
    =
    x − a
    aax

    ⇒ x2 = x − a
    ⇒  x − x2 = a