Algebra


  1. If   a = 7 + 4√3, find the value of  
    3a6 + 2a4 + 4a3 + 2a2 + 3
    .
    a4 + a3 + a2









  1. View Hint View Answer Discuss in Forum

    a = 7 + 4√3

    ∴ 
    1
    =
    1
    a7 + 4√3

    =
    1
    ×
    7 − 4√3
    7 + 4√37 − 4√3

    =
    7 − 4√3
    = 7 − 4√3
    49 − 48

    Expression =
    3a6 + 2a4 + 4a3 + 2a2 + 3
    a4 + a3 + a2

    = 3a3 + 2a + 4 +
    2
    +
    3
    aa3
               a + 1 +
    1
    a

    [Dividing numerator and denominator by a3]

    =
    3((14)3 − 3 × 14) + 2 × 14 + 4
    14 + 1

    =
    3 × 2702 + 28 + 4
    15

    =
    8138
    15

    Correct Option: B

    a = 7 + 4√3

    ∴ 
    1
    =
    1
    a7 + 4√3

    =
    1
    ×
    7 − 4√3
    7 + 4√37 − 4√3

    =
    7 − 4√3
    = 7 − 4√3
    49 − 48

    Expression =
    3a6 + 2a4 + 4a3 + 2a2 + 3
    a4 + a3 + a2

    = 3a3 + 2a + 4 +
    2
    +
    3
    aa3
               a + 1 +
    1
    a

    [Dividing numerator and denominator by a3]

    =
    3((14)3 − 3 × 14) + 2 × 14 + 4
    14 + 1

    =
    3 × 2702 + 28 + 4
    15

    =
    8138
    15


  1. If   2x +
    1
    = 3, then the value of   x3 +
    1
    + 2 is
    xx3









  1. View Hint View Answer Discuss in Forum

    2x +
    2
    = 3
    x

    On dividing by 2,
    x +
    1
    =
    3
    x2

    On cubing both sides,
    x +
    1
    3 =
    3
    3
    x2

    ⇒  x3 +
    1
    + 3x +
    1
    =
    27
    x3x8

    ⇒  x3 +
    1
    + 3 ×
    3
    =
    27
    x328

    ⇒  x3 +
    1
    +
    9
    =
    27
    x328

    ⇒  x3 +
    1
    =
    27
    9
    x382

    =
    27 − 26
    =
    9
    88

    ∴  x3 +
    1
    + 2
    x3

    = 2 −
    9
    =
    16 − 9
    88

    =
    7
    8

    Correct Option: D

    2x +
    2
    = 3
    x

    On dividing by 2,
    x +
    1
    =
    3
    x2

    On cubing both sides,
    x +
    1
    3 =
    3
    3
    x2

    ⇒  x3 +
    1
    + 3x +
    1
    =
    27
    x3x8

    ⇒  x3 +
    1
    + 3 ×
    3
    =
    27
    x328

    ⇒  x3 +
    1
    +
    9
    =
    27
    x328

    ⇒  x3 +
    1
    =
    27
    9
    x382

    =
    27 − 26
    =
    9
    88

    ∴  x3 +
    1
    + 2
    x3

    = 2 −
    9
    =
    16 − 9
    88

    =
    7
    8



  1. If x = 1 + √2 + √3, then the value of (2x4 – 8x3 + 26x – 28) is









  1. View Hint View Answer Discuss in Forum

    x = 1 + √2 + √3
    ⇒ x - 1 = √3 + √2
    On squaring both sides ,
    x2 – 2x + 1 = 3 + 2 + 2√6
    ⇒ x2 – 2x + 1 - 5 = 2√6
    ⇒ x2 – 2x - 4 = 2√6
    On squaring again,
    (x2 – 2x - 4)2 = (2√6)2
    ⇒ x4 + 4x2 + 16 – 4x3 + 16x - 8x2 = 24
    ⇒ x4 – 4x3 - 4x2 + 16x - 8x2 - 8 = 0
    ⇒ 2x4 – 8x3 - 8x2 + 32x - 16 = 0
    ∴ 2x4 – 8x3 - 5x2 + 32x - 16 + 3x2 - 6x - 12
    = 0 + 3 (x2 – 2x – 4) = 3 × 2√6
    Required answer = 6√6

    Correct Option: D

    x = 1 + √2 + √3
    ⇒ x - 1 = √3 + √2
    On squaring both sides ,
    x2 – 2x + 1 = 3 + 2 + 2√6
    ⇒ x2 – 2x + 1 - 5 = 2√6
    ⇒ x2 – 2x - 4 = 2√6
    On squaring again,
    (x2 – 2x - 4)2 = (2√6)2
    ⇒ x4 + 4x2 + 16 – 4x3 + 16x - 8x2 = 24
    ⇒ x4 – 4x3 - 4x2 + 16x - 8x2 - 8 = 0
    ⇒ 2x4 – 8x3 - 8x2 + 32x - 16 = 0
    ∴ 2x4 – 8x3 - 5x2 + 32x - 16 + 3x2 - 6x - 12
    = 0 + 3 (x2 – 2x – 4) = 3 × 2√6
    Required answer = 6√6


  1. If x +
    1
    = √3 the value of (x18 + x12 + x6 + 1) is
    x









  1. View Hint View Answer Discuss in Forum

    x +
    1
    = √3
    x

    On cubing both sides,
    x +
    1
    3 = (3√3)3
    x

    ⇒ x3 +
    1
    + 3x.
    1
    x +
    1
    = 3√3
    x3xx

    ⇒ x3 +
    1
    + 3 × √3 = 3√3
    x3

    ⇒ x3 +
    1
    = 3√3 - 3√3 = 0
    x3

    ⇒ x6 + 1 = 0
    ∴ x18 + x12 + x6 + 1 = x12( x6 + 1 ) + 1( x6 + 1 )
    x18 + x12 + x6 + 1 = ( x6 + 1 )( x12 + 1 ) = 0

    Correct Option: A

    x +
    1
    = √3
    x

    On cubing both sides,
    x +
    1
    3 = (3√3)3
    x

    ⇒ x3 +
    1
    + 3x.
    1
    x +
    1
    = 3√3
    x3xx

    ⇒ x3 +
    1
    + 3 × √3 = 3√3
    x3

    ⇒ x3 +
    1
    = 3√3 - 3√3 = 0
    x3

    ⇒ x6 + 1 = 0
    ∴ x18 + x12 + x6 + 1 = x12( x6 + 1 ) + 1( x6 + 1 )
    x18 + x12 + x6 + 1 = ( x6 + 1 )( x12 + 1 ) = 0



  1. If a = 299, b = 298, c = 297 then the value of 2a3 + 2b3 + 2c3 – 6abc is









  1. View Hint View Answer Discuss in Forum

    2a3 + 2b3 + 2c3 – 6abc
    = 2 (a3 + b3 + c3 – 3abc)

    = 2 (a + b + c) ×
    1
    {(a – b)2 + (b –
    c)2 + (c – a)2}
    2

    = (299 + 298 + 297) {(299 – 298)2 + (298 – 297)2 + (297 – 299)2}
    = 894 × (1 + 1 + 4)
    = 894 × 6 = 5364

    Correct Option: C

    2a3 + 2b3 + 2c3 – 6abc
    = 2 (a3 + b3 + c3 – 3abc)

    = 2 (a + b + c) ×
    1
    {(a – b)2 + (b –
    c)2 + (c – a)2}
    2

    = (299 + 298 + 297) {(299 – 298)2 + (298 – 297)2 + (297 – 299)2}
    = 894 × (1 + 1 + 4)
    = 894 × 6 = 5364