Algebra


  1. x2 + y2 + z2 = 14 and xy + yz + zx = 11, then the value of (x + y + z)2 is









  1. View Hint View Answer Discuss in Forum

    Given,
    x2 + y2 + z2 = 14
    xy + yz + zx = 11
    ∴  (x + y + z)2 = x2 + y2 + z2 + 2(xy + yz + zx)
    = 14 + 2 × 11
    = 14 + 22 = 36

    Correct Option: C

    Given,
    x2 + y2 + z2 = 14
    xy + yz + zx = 11
    ∴  (x + y + z)2 = x2 + y2 + z2 + 2(xy + yz + zx)
    = 14 + 2 × 11
    = 14 + 22 = 36


  1. If   x3 +
    1
    = 110, then find the value of x +
    1
    .
    x3x









  1. View Hint View Answer Discuss in Forum

    a3 + b3 = (a + b)3 – 3ab (a + b)

    ∴  x3 +
    1
    = 110
    x3

    ⇒  x +
    1
    3 − 3x +
    1
    xx

    = (5)3 – 3 × 5
    ⇒  x +
    1
    = 5
    x

    Correct Option: D

    a3 + b3 = (a + b)3 – 3ab (a + b)

    ∴  x3 +
    1
    = 110
    x3

    ⇒  x +
    1
    3 − 3x +
    1
    xx

    = (5)3 – 3 × 5
    ⇒  x +
    1
    = 5
    x



  1. If x4 +
    1
    = 119, then the value ofx −
    1
    is
    x4x









  1. View Hint View Answer Discuss in Forum

    x4 +
    1
    = 119
    x4

    ⇒  x2 +
    1
    2 – 2 = 119
    x2

    ⇒  x2 +
    1
    2 = 119 + 2 = 121
    x2

    ⇒  x2 +
    1
    2 = 112
    x2

    ⇒  x2 +
    1
    = 11
    x2

    ∴  x −
    1
    2 + 2 = 11
    x

    ⇒  x −
    1
    2 = 11 – 2 = 9 = 32
    x

    ⇒  x −
    1
    = 3
    x

    Correct Option: D

    x4 +
    1
    = 119
    x4

    ⇒  x2 +
    1
    2 – 2 = 119
    x2

    ⇒  x2 +
    1
    2 = 119 + 2 = 121
    x2

    ⇒  x2 +
    1
    2 = 112
    x2

    ⇒  x2 +
    1
    = 11
    x2

    ∴  x −
    1
    2 + 2 = 11
    x

    ⇒  x −
    1
    2 = 11 – 2 = 9 = 32
    x

    ⇒  x −
    1
    = 3
    x


  1. If m + n = 1, then the value of m3 + n3 + 3mn is equal to









  1. View Hint View Answer Discuss in Forum

    m3 + n3 + 3mn
    = m3 + n3 + 3mn(m + n) [∵  m + n =1]
    = (m + n)3 = 1

    Correct Option: B

    m3 + n3 + 3mn
    = m3 + n3 + 3mn(m + n) [∵  m + n =1]
    = (m + n)3 = 1



  1. If a +
    1
    2 = 3, then the value of   a6
    1
    will be
    aa6









  1. View Hint View Answer Discuss in Forum

    a +
    1
    2= 3
    a

    ⇒  a +
    1
    = √3
    a

    On cubing both sides,
    a +
    1
    3 = (√3)3
    a

    ⇒  a3 +
    1
    + 3a +
    1
    = 3√3
    a3a

    ⇒  a3 +
    1
    + 3√3 = 3√3
    a3

    ⇒  a3 +
    1
    = 3√3 − 3√3 = 0
    a3

    ∴  a6
    1
    a6

    = a3 +
    1
    a3
    1
    = 0
    a3a3

    Correct Option: C

    a +
    1
    2= 3
    a

    ⇒  a +
    1
    = √3
    a

    On cubing both sides,
    a +
    1
    3 = (√3)3
    a

    ⇒  a3 +
    1
    + 3a +
    1
    = 3√3
    a3a

    ⇒  a3 +
    1
    + 3√3 = 3√3
    a3

    ⇒  a3 +
    1
    = 3√3 − 3√3 = 0
    a3

    ∴  a6
    1
    a6

    = a3 +
    1
    a3
    1
    = 0
    a3a3