Algebra
-
If x 3 − 2 = 3 = , then the value of x2 + 1 is x x x2
-
View Hint View Answer Discuss in Forum
3x − 2 = 3 x ⇒ 3x − 3 = 2 x ⇒ x − 1 = 2 x 3
On squaring both sidesx − 1 2 = 4 x 9 ⇒ x2 + 1 − 2 = 4 x2 9 ⇒ x2 + 1 x2 = 4 + 2 = 22 = 2 4 9 9 9 Correct Option: B
3x − 2 = 3 x ⇒ 3x − 3 = 2 x ⇒ x − 1 = 2 x 3
On squaring both sidesx − 1 2 = 4 x 9 ⇒ x2 + 1 − 2 = 4 x2 9 ⇒ x2 + 1 x2 = 4 + 2 = 22 = 2 4 9 9 9
-
If x = 3 + 2√2 , the value of x2 + 1 is x2
-
View Hint View Answer Discuss in Forum
x = 3 + 2√2
∴ 1 = 1 x 3 + 2√2 = 1 × 3 − 2√2 3 + 2√2 3 − 2√2 = 3 − 2√2 9 − 8
= 3 − 2√2x + 1 = 3 + 2√2 + 3 − 2√2 = 6 x ∴ x2 + 1 = x + 1 2 − 2 x2 x
= (6)2 – 2 = 36 – 2 = 34Correct Option: D
x = 3 + 2√2
∴ 1 = 1 x 3 + 2√2 = 1 × 3 − 2√2 3 + 2√2 3 − 2√2 = 3 − 2√2 9 − 8
= 3 − 2√2x + 1 = 3 + 2√2 + 3 − 2√2 = 6 x ∴ x2 + 1 = x + 1 2 − 2 x2 x
= (6)2 – 2 = 36 – 2 = 34
-
If a + b + c = 2s, then (s − a)2 + (s − b)2 + (s − c)2 + s2 is equal to a2 + b2 + c2
-
View Hint View Answer Discuss in Forum
Expression = (s − a)2 + (s − b)2 + (s − c)2 + s2 a2 + b2 + c2 = s2 − 2sa + a2 + s2 + b2 − 2sb + s2 − 2sc + c2 + s2 a2 + b2 + c2 = 4s2 + a2 + b2 + c2 − 2s(a + b + c) a2 + b2 + c2 = 4s2 + a2 + b2 + c2 − 4s2 = 1 a2 + b2 + c2 Correct Option: C
Expression = (s − a)2 + (s − b)2 + (s − c)2 + s2 a2 + b2 + c2 = s2 − 2sa + a2 + s2 + b2 − 2sb + s2 − 2sc + c2 + s2 a2 + b2 + c2 = 4s2 + a2 + b2 + c2 − 2s(a + b + c) a2 + b2 + c2 = 4s2 + a2 + b2 + c2 − 4s2 = 1 a2 + b2 + c2
-
If a, b, c are non-zero, a + 1 = 1 and b + 1 = 1, then the value of abc is : b c
-
View Hint View Answer Discuss in Forum
a + 1 = 1 ⇒ ab + 1 = b b
⇒ ab = b – 1 .....(i)
Again,b + 1 = 1 c 1 = 1 − b ⇒ c = 1 .....(ii) c b − c
On multiplying (i) & (ii)abc = b − 1 = − 1 1 − b Correct Option: A
a + 1 = 1 ⇒ ab + 1 = b b
⇒ ab = b – 1 .....(i)
Again,b + 1 = 1 c 1 = 1 − b ⇒ c = 1 .....(ii) c b − c
On multiplying (i) & (ii)abc = b − 1 = − 1 1 − b
- If a + b + c = 0, then the value of
a + b + b + c + c + a a + b + c is : c a b b + c c + a a + b
-
View Hint View Answer Discuss in Forum
a + b + c = 0
⇒ a + b = – c ; b + c = – a , c + a = – b∴ a + b + b + c + c + a a b c
= – 1 – 1 – 1 = – 3a + b + c b + c c + a a + b
= – 1 – 1 – 1 = – 3
∴ Expression = (– 3) × (– 3) = 9Correct Option: C
a + b + c = 0
⇒ a + b = – c ; b + c = – a , c + a = – b∴ a + b + b + c + c + a a b c
= – 1 – 1 – 1 = – 3a + b + c b + c c + a a + b
= – 1 – 1 – 1 = – 3
∴ Expression = (– 3) × (– 3) = 9