Algebra


  1. If a2 + 1 = a, then the value of a3 is









  1. View Hint View Answer Discuss in Forum

    a2 + 1 = a
    ⇒  a2 – a + 1 = 0
    ⇒  (a + 1) (a2 – a + 1) = 0
    ⇒  a3 + 1 = 0
    ⇒  a3 = – 1

    Correct Option: C

    a2 + 1 = a
    ⇒  a2 – a + 1 = 0
    ⇒  (a + 1) (a2 – a + 1) = 0
    ⇒  a3 + 1 = 0
    ⇒  a3 = – 1


  1. If x + y = √3 and x – y = √2 , then the value of 8xy (x2 + y2) is :









  1. View Hint View Answer Discuss in Forum

    x + y = √3
    x – y = √2
    ∴  (x + y)2 + (x – y)2 = 3 + 2
    ⇒  2 (x2 + y2) = 5        ...(i)
    Again,
    (x + y)2 – (x – y)2 = 3 – 2
    ⇒  4xy = 1         ...(ii)
    ∴  (x2 + y2) = 5 × 1 = 5

    Correct Option: C

    x + y = √3
    x – y = √2
    ∴  (x + y)2 + (x – y)2 = 3 + 2
    ⇒  2 (x2 + y2) = 5        ...(i)
    Again,
    (x + y)2 – (x – y)2 = 3 – 2
    ⇒  4xy = 1         ...(ii)
    ∴  (x2 + y2) = 5 × 1 = 5



  1. If   a =
    1
    (a > 0), then the value of a +
    1
    is
    a − 5a









  1. View Hint View Answer Discuss in Forum

    a =
    1
    a – 5

    ⇒  a2 – 5a = 1
    ⇒  a2 – 5a – 1 = 0
    ∴  a =
    5 ± √(−5)² − 4 × 1 × (−1)
    2

    If ax² + bx + c = 0, then x =
    −b ± √(b)² − 4ac
    2a

    =
    5 ± √25 + 4
    2

    =
    5 ± √29
    2

    If   a =
    5 ± √29
    ,   then
    2

    1
    =
    2
    a5 + √29

    2
    ×
    5 − √29
    5 + √295 − √29

    =
    2(5 − √29)
    =
    5 − √29
    25 − 29−2

    ∴  a +
    1
    =
    5 + √29
    5 − √29
    a22

    =
    5 + √29 − 5 + √29
    = √29
    2

    Correct Option: A

    a =
    1
    a – 5

    ⇒  a2 – 5a = 1
    ⇒  a2 – 5a – 1 = 0
    ∴  a =
    5 ± √(−5)² − 4 × 1 × (−1)
    2

    If ax² + bx + c = 0, then x =
    −b ± √(b)² − 4ac
    2a

    =
    5 ± √25 + 4
    2

    =
    5 ± √29
    2

    If   a =
    5 ± √29
    ,   then
    2

    1
    =
    2
    a5 + √29

    2
    ×
    5 − √29
    5 + √295 − √29

    =
    2(5 − √29)
    =
    5 − √29
    25 − 29−2

    ∴  a +
    1
    =
    5 + √29
    5 − √29
    a22

    =
    5 + √29 − 5 + √29
    = √29
    2


  1. If a + b + c = 5, ab + bc + ca = 7 and abc = 3, find the value of
    a
    +
    b
    +
    b
    +
    c
    +
    c
    +
    a
    bacbac









  1. View Hint View Answer Discuss in Forum

    a + b + c = 5;
    ab + bc + ca = 7
    abc = 3
    a² + b² + c² = (a + b + c)² – 2 (ab + bc + ca)
    = 25 – 2 × 7 = 11.
    Clearly,
    a = b = 1, c = 3
    a = c = 1, b = 3
    b = c = 1, a = 3

    a
    +
    b
    +
    b
    +
    c
    +
    c
    +
    a
    bacbac

    = (1 + 1) +
    1
    + 3 + 3 +
    1
    33

    = 8 +
    1
    +
    1
    = 8
    2
    333

    Correct Option: A

    a + b + c = 5;
    ab + bc + ca = 7
    abc = 3
    a² + b² + c² = (a + b + c)² – 2 (ab + bc + ca)
    = 25 – 2 × 7 = 11.
    Clearly,
    a = b = 1, c = 3
    a = c = 1, b = 3
    b = c = 1, a = 3

    a
    +
    b
    +
    b
    +
    c
    +
    c
    +
    a
    bacbac

    = (1 + 1) +
    1
    + 3 + 3 +
    1
    33

    = 8 +
    1
    +
    1
    = 8
    2
    333



  1. p and q are positive numbers satisfying 3p + 2pq = 4 and 5q + pq = 3. Find the value of p.









  1. View Hint View Answer Discuss in Forum

    3p + 2pq = 4
    → p (3 + 2q) = 4

    ⇒ p =
    4
    .........(i)
    3 + 2q

    Now, putting the value of p in
    5q + pq = 3,
    we get
    5q +
    4
    (q) = 3
    3 + 2q

    15q + 10q² + 4q
    = 3
    3 + 2q

    ⇒ 19q + 10q² = 9 + 6q
    ⇒ 10q² + 13q – 9 = 0
    ⇒ 10q² + 18q – 5q – 9 = 0
    ⇒ 2q (5q + 9) – 1 (5q + 9) = 0
    ⇒ (2q – 1) (5q + 9) = 0
    ⇒ q =
    1
    or -
    9
    22

    Putting q = 1/2 in (i),
    ⇒ p =
    4
    = 1
    3 + 2 × (1/2)

    putting q = -
    9
    5

    = p
    4
    3 + 2-
    9
    5

    =
    4 × 5
    15 - 18

    = -
    20
    3

    Correct Option: C

    3p + 2pq = 4
    → p (3 + 2q) = 4

    ⇒ p =
    4
    .........(i)
    3 + 2q

    Now, putting the value of p in
    5q + pq = 3,
    we get
    5q +
    4
    (q) = 3
    3 + 2q

    15q + 10q² + 4q
    = 3
    3 + 2q

    ⇒ 19q + 10q² = 9 + 6q
    ⇒ 10q² + 13q – 9 = 0
    ⇒ 10q² + 18q – 5q – 9 = 0
    ⇒ 2q (5q + 9) – 1 (5q + 9) = 0
    ⇒ (2q – 1) (5q + 9) = 0
    ⇒ q =
    1
    or -
    9
    22

    Putting q = 1/2 in (i),
    ⇒ p =
    4
    = 1
    3 + 2 × (1/2)

    putting q = -
    9
    5

    = p
    4
    3 + 2-
    9
    5

    =
    4 × 5
    15 - 18

    = -
    20
    3