Algebra
-
If 4x + 1 = 5, x ≠ 0, then the value of 5x is : x 4x2 + 10x + 1
-
View Hint View Answer Discuss in Forum
4x + 1 = 5 x Expression = 5x 4x2 + 1 + 10x = 5x x 4x + 1 + 10 x = 5 = 5 = 1 5 + 10 15 3 Correct Option: B
4x + 1 = 5 x Expression = 5x 4x2 + 1 + 10x = 5x x 4x + 1 + 10 x = 5 = 5 = 1 5 + 10 15 3
- If a2 = b + c, b2 = c + a, c2 = a + b, then the value of 3
1 + 1 + 1 is : a + 1 b + 1 c + 1
-
View Hint View Answer Discuss in Forum
a2 = b + c
⇒ a2 + a = a + b + c
⇒ a (a + 1) = a + b + c⇒ 1 = a a + 1 a + b + c
Again,
b2 = c + a
⇒ b2 + b = a + b + c
⇒ b (b + 1) = a + b + c⇒ 1 = b b + 1 a + b + c
c2 = a + b
⇒ c2 + c = a + b + c
⇒ c (c + 1) = a + b + c⇒ 1 = c c + 1 a + b + c ∴ 3 1 + 1 + 1 a + 1 b + 1 c + 1 = 3 a + b + c a + b + c a + b + c a + b + c = 3 a + b + c = 3 a + b + c Correct Option: C
a2 = b + c
⇒ a2 + a = a + b + c
⇒ a (a + 1) = a + b + c⇒ 1 = a a + 1 a + b + c
Again,
b2 = c + a
⇒ b2 + b = a + b + c
⇒ b (b + 1) = a + b + c⇒ 1 = b b + 1 a + b + c
c2 = a + b
⇒ c2 + c = a + b + c
⇒ c (c + 1) = a + b + c⇒ 1 = c c + 1 a + b + c ∴ 3 1 + 1 + 1 a + 1 b + 1 c + 1 = 3 a + b + c a + b + c a + b + c a + b + c = 3 a + b + c = 3 a + b + c
-
If (a – 2) + 1 = – 1, then the value of (a + 2)2 + 1 is : (a + 2) (a + 2)2
-
View Hint View Answer Discuss in Forum
a – 2 + 1 = – 1 a + 2 ⇒ (a – 2 + 4) + 1 = 4 – 1 a + 2 ⇒ (a + 2) + 1 = 3 (a + 2)
On squaring both sides,(a + 2)2 + 1 + 2 × (a + 2) × 1 = 9 (a + 2)2 (a + 2) ⇒ (a + 2)2 + 1 (a + 2)2
= 9 – 2 = 7Correct Option: A
a – 2 + 1 = – 1 a + 2 ⇒ (a – 2 + 4) + 1 = 4 – 1 a + 2 ⇒ (a + 2) + 1 = 3 (a + 2)
On squaring both sides,(a + 2)2 + 1 + 2 × (a + 2) × 1 = 9 (a + 2)2 (a + 2) ⇒ (a + 2)2 + 1 (a + 2)2
= 9 – 2 = 7
-
If a + 1 = 1 and b + 1 = 1, then the value of c + 1 is : b c a
-
View Hint View Answer Discuss in Forum
a + 1 = 1 b ⇒ a = 1 – 1 = b − 1 b b ⇒ 1 = b ..... (i) a b − 1 Again, b + 1 = 1 c ⇒ 1 = 1 – b c ⇒ c = 1 ...(ii) 1 – b ∴ c + 1 = 1 + b a 1 – b b – 1 = 1 – b 1 – b 1 – b = 1 – b = 1 1 – b Correct Option: B
a + 1 = 1 b ⇒ a = 1 – 1 = b − 1 b b ⇒ 1 = b ..... (i) a b − 1 Again, b + 1 = 1 c ⇒ 1 = 1 – b c ⇒ c = 1 ...(ii) 1 – b ∴ c + 1 = 1 + b a 1 – b b – 1 = 1 – b 1 – b 1 – b = 1 – b = 1 1 – b
- If x = at2 and y = 2at then
-
View Hint View Answer Discuss in Forum
x = at2
y = 2at
⇒ y2 = 4a2t2
= 4a.at2 = 4axCorrect Option: B
x = at2
y = 2at
⇒ y2 = 4a2t2
= 4a.at2 = 4ax