Algebra


  1. If   4x +
    1
    = 5, x ≠ 0, then the value of
    5x
    is :
    x4x2 + 10x + 1









  1. View Hint View Answer Discuss in Forum

    4x +
    1
    = 5
    x

    Expression =
    5x
    4x2 + 1 + 10x

    =
    5x
    x4x +
    1
    + 10
    x

    =
    5
    =
    5
    =
    1
    5 + 10153

    Correct Option: B

    4x +
    1
    = 5
    x

    Expression =
    5x
    4x2 + 1 + 10x

    =
    5x
    x4x +
    1
    + 10
    x

    =
    5
    =
    5
    =
    1
    5 + 10153


  1. If a2 = b + c, b2 = c + a, c2 = a + b, then the value of 3
    1
    +
    1
    +
    1
    is :
    a + 1b + 1c + 1









  1. View Hint View Answer Discuss in Forum

    a2 = b + c
    ⇒  a2 + a = a + b + c
    ⇒  a (a + 1) = a + b + c

    ⇒ 
    1
    =
    a
    a + 1a + b + c

    Again,
    b2 = c + a
    ⇒  b2 + b = a + b + c
    ⇒  b (b + 1) = a + b + c
    ⇒ 
    1
    =
    b
    b + 1a + b + c

    c2 = a + b
    ⇒  c2 + c = a + b + c
    ⇒  c (c + 1) = a + b + c
    ⇒ 
    1
    =
    c
    c + 1a + b + c

    ∴  3
    1
    +
    1
    +
    1
    a + 1b + 1c + 1

    = 3
    a
    +
    b
    +
    c
    a + b + ca + b + ca + b + c

    = 3
    a + b + c
    = 3
    a + b + c

    Correct Option: C

    a2 = b + c
    ⇒  a2 + a = a + b + c
    ⇒  a (a + 1) = a + b + c

    ⇒ 
    1
    =
    a
    a + 1a + b + c

    Again,
    b2 = c + a
    ⇒  b2 + b = a + b + c
    ⇒  b (b + 1) = a + b + c
    ⇒ 
    1
    =
    b
    b + 1a + b + c

    c2 = a + b
    ⇒  c2 + c = a + b + c
    ⇒  c (c + 1) = a + b + c
    ⇒ 
    1
    =
    c
    c + 1a + b + c

    ∴  3
    1
    +
    1
    +
    1
    a + 1b + 1c + 1

    = 3
    a
    +
    b
    +
    c
    a + b + ca + b + ca + b + c

    = 3
    a + b + c
    = 3
    a + b + c



  1. If   (a – 2) +
    1
    = – 1, then the value of (a + 2)2 +
    1
    is :
    (a + 2)(a + 2)2









  1. View Hint View Answer Discuss in Forum

    a – 2 +
    1
    = – 1
    a + 2

    ⇒  (a – 2 + 4) +
    1
    = 4 – 1
    a + 2

    ⇒  (a + 2) +
    1
    = 3
    (a + 2)

    On squaring both sides,
    (a + 2)2 +
    1
    + 2 × (a + 2) ×
    1
    = 9
    (a + 2)2(a + 2)

    ⇒ (a + 2)2 +
    1
    (a + 2)2

    = 9 – 2 = 7

    Correct Option: A

    a – 2 +
    1
    = – 1
    a + 2

    ⇒  (a – 2 + 4) +
    1
    = 4 – 1
    a + 2

    ⇒  (a + 2) +
    1
    = 3
    (a + 2)

    On squaring both sides,
    (a + 2)2 +
    1
    + 2 × (a + 2) ×
    1
    = 9
    (a + 2)2(a + 2)

    ⇒ (a + 2)2 +
    1
    (a + 2)2

    = 9 – 2 = 7


  1. If   a +
    1
    = 1 and b +
    1
    = 1, then the value of c +
    1
    is :
    bca









  1. View Hint View Answer Discuss in Forum

    a +
    1
    = 1
    b

    ⇒  a = 1 –
    1
    =
    b − 1
    bb

    ⇒ 
    1
    =
    b
        ..... (i)
    ab − 1

    Again,  b +
    1
    = 1
    c

    ⇒ 
    1
    = 1 – b
    c

    ⇒  c =
    1
        ...(ii)
    1 – b

    ∴  c +
    1
    =
    1
    +
    b
    a1 – bb – 1

    =
    1
    b
    1 – b1 – b

    =
    1 – b
    = 1
    1 – b

    Correct Option: B

    a +
    1
    = 1
    b

    ⇒  a = 1 –
    1
    =
    b − 1
    bb

    ⇒ 
    1
    =
    b
        ..... (i)
    ab − 1

    Again,  b +
    1
    = 1
    c

    ⇒ 
    1
    = 1 – b
    c

    ⇒  c =
    1
        ...(ii)
    1 – b

    ∴  c +
    1
    =
    1
    +
    b
    a1 – bb – 1

    =
    1
    b
    1 – b1 – b

    =
    1 – b
    = 1
    1 – b



  1. If x = at2 and y = 2at then









  1. View Hint View Answer Discuss in Forum

    x = at2
    y = 2at
    ⇒  y2 = 4a2t2
    = 4a.at2 = 4ax

    Correct Option: B

    x = at2
    y = 2at
    ⇒  y2 = 4a2t2
    = 4a.at2 = 4ax