Algebra


  1. If a + b + c = 0, then
    2a2
    +
    2b2
    +
    2c2
    + 3 = ?
    b2 + c2 − a2c2 + a2 − b2a2 + b2 − c2









  1. View Hint View Answer Discuss in Forum

    If a + b + c = 0
    a + b = – c
    On squaring both sides,
    ⇒  a2 + b2 + 2ab = c2
    Similarly,
    a2 = b2 + c2 + 2ac
    b2 = a2 + c2 + 2ac

    ∴  Expression =
    2a2
    +
    2b2
    +
    2c2
    + 3
    b2 + c2 − a2c2 + a2 − b2a2 + b2 − c2

    L.H.S. =
    2a2
    + 1 +
    2b2
    + 1 +
    2c2
    + 1
    b2 + c2 − a2c2 + a2 − b2a2 + b2 − c2

    L.H.S. =
    2a2
    + 1 +
    2b2
    + 1 +
    2c2
    + 1
    b2 + c2 − a2c2 + a2 − b2a2 + b2 − c2

    =
    a2 + b2 + c2
    +
    a2 + b2 + c2
    +
    a2 + b2 + c2
    = (a2 + b2 + c2)
    b2 + c2 − a2c2 + a2 − b2a2 + b2 − c2

    1
    +
    1
    +
    1
    b2 + c2 − b2 − c2 − 2bcc2 + a2 − c2 − a2 − 2aca2 + b2 − a2 − b2 − 2ab

    = (a2 + b2 + c2)
    1
    1
    1
    −2bc2ac2ab

    = (a2 + b2 + c2)
    − a − b − c
    = 0
    −2abc

    Correct Option: C

    If a + b + c = 0
    a + b = – c
    On squaring both sides,
    ⇒  a2 + b2 + 2ab = c2
    Similarly,
    a2 = b2 + c2 + 2ac
    b2 = a2 + c2 + 2ac

    ∴  Expression =
    2a2
    +
    2b2
    +
    2c2
    + 3
    b2 + c2 − a2c2 + a2 − b2a2 + b2 − c2

    L.H.S. =
    2a2
    + 1 +
    2b2
    + 1 +
    2c2
    + 1
    b2 + c2 − a2c2 + a2 − b2a2 + b2 − c2

    L.H.S. =
    2a2
    + 1 +
    2b2
    + 1 +
    2c2
    + 1
    b2 + c2 − a2c2 + a2 − b2a2 + b2 − c2

    =
    a2 + b2 + c2
    +
    a2 + b2 + c2
    +
    a2 + b2 + c2
    = (a2 + b2 + c2)
    b2 + c2 − a2c2 + a2 − b2a2 + b2 − c2

    1
    +
    1
    +
    1
    b2 + c2 − b2 − c2 − 2bcc2 + a2 − c2 − a2 − 2aca2 + b2 − a2 − b2 − 2ab

    = (a2 + b2 + c2)
    1
    1
    1
    −2bc2ac2ab

    = (a2 + b2 + c2)
    − a − b − c
    = 0
    −2abc


  1. If a2 + b2 + c2 = 2(2a – 3b – 5c) – 38, find the value of (a – b – c).









  1. View Hint View Answer Discuss in Forum

    a2 + b2 + c2 = 4a – 6b – 10c – 38
    ⇒  a2 + b2 + c2 –4a + 6b + 10c + 38 = 0
    ⇒  a2 – 4a + 4 + b2 + 6b + 9 + c2 + 10c + 25 = 0
    ⇒  (a – 2)2 + (b + 3)2 + (c + 5)2 = 0
    ∴  a – 2 = 0 ⇒ a = 2
    b + 3 = 0 ⇒ b = –3
    c + 5 = 0 ⇒ c = –5
    ∴  a – b – c = 2 + 3 + 5 = 10

    Correct Option: B

    a2 + b2 + c2 = 4a – 6b – 10c – 38
    ⇒  a2 + b2 + c2 –4a + 6b + 10c + 38 = 0
    ⇒  a2 – 4a + 4 + b2 + 6b + 9 + c2 + 10c + 25 = 0
    ⇒  (a – 2)2 + (b + 3)2 + (c + 5)2 = 0
    ∴  a – 2 = 0 ⇒ a = 2
    b + 3 = 0 ⇒ b = –3
    c + 5 = 0 ⇒ c = –5
    ∴  a – b – c = 2 + 3 + 5 = 10



  1. If   x2 – 3x + 1 = 0, find the value of x3 +
    1
    .
    x3









  1. View Hint View Answer Discuss in Forum

    x2 – 3x + 1 = 0
    ⇒  x2 + 1 = 3x

    ⇒ 
    x2 + 1
    = 3
    x

    ⇒  x +
    1
    = 3
    x

    On cubing both sides,
    x +
    1
    3 = 27
    x

    ⇒ x3 +
    1
    + 3 x +
    1
    = 27
    x3x

    ⇒  x3 +
    1
    + 3 × 3 = 27
    x3

    ⇒  x3 +
    1
    = 27 − 9 = 18
    x3

    Correct Option: A

    x2 – 3x + 1 = 0
    ⇒  x2 + 1 = 3x

    ⇒ 
    x2 + 1
    = 3
    x

    ⇒  x +
    1
    = 3
    x

    On cubing both sides,
    x +
    1
    3 = 27
    x

    ⇒ x3 +
    1
    + 3 x +
    1
    = 27
    x3x

    ⇒  x3 +
    1
    + 3 × 3 = 27
    x3

    ⇒  x3 +
    1
    = 27 − 9 = 18
    x3


  1. If   ax + by = 1 and bx + ay =
    2ab
    then (x2 + y2)(a2 + b2)is equal to
    a2 + b2









  1. View Hint View Answer Discuss in Forum

    ax + by – 1 = 0

    bx + ay –
    2ab
    = 0
    a2 + b2

    By cross-multiplication.

    Correct Option: A

    ax + by – 1 = 0

    bx + ay –
    2ab
    = 0
    a2 + b2

    By cross-multiplication.



  1. If   a +
    1
    = b +
    1
    = c +
    1
    (where a ≠ b ≠ c), then abc is equal to
    bca









  1. View Hint View Answer Discuss in Forum

    a +
    1
    = b +
    1
    = c +
    1
    = ±1 (let)
    bca

    ⇒  a +
    1
    = 1
    b

    ⇒  ab + 1 = b ⇒ ab = b – 1
    b +
    1
    = 1 ⇒
    1
    = 1 – b
    cc

    c =
    1
    1 – b

    ∴  abc =
    b – 1
    = – 1
    1 – b

    Again,  a +
    1
    = – 1
    b

    ⇒  ab + 1 = –b ⇒ ab = –b – 1
    b +
    1
    = –1 ⇒
    1
    = – 1 – b
    cc

    c =
    1
    – 1 – b

    ∴  abc = 1
    ∴  abc = ±1

    Correct Option: C

    a +
    1
    = b +
    1
    = c +
    1
    = ±1 (let)
    bca

    ⇒  a +
    1
    = 1
    b

    ⇒  ab + 1 = b ⇒ ab = b – 1
    b +
    1
    = 1 ⇒
    1
    = 1 – b
    cc

    c =
    1
    1 – b

    ∴  abc =
    b – 1
    = – 1
    1 – b

    Again,  a +
    1
    = – 1
    b

    ⇒  ab + 1 = –b ⇒ ab = –b – 1
    b +
    1
    = –1 ⇒
    1
    = – 1 – b
    cc

    c =
    1
    – 1 – b

    ∴  abc = 1
    ∴  abc = ±1