Algebra
- If x + y = a and xy = b² , then the value of x³ – x²y - xy² + y³ in terms of a and b is :
-
View Hint View Answer Discuss in Forum
x3 - x2y - xy2 + y3 = x3 + y3 - x2y - xy2
= (x + y)3 - 3xy(x + y) – xy(x + y)
= (x + y)3 - 4xy(x + y) = a3 - 4b2aCorrect Option: C
x3 - x2y - xy2 + y3 = x3 + y3 - x2y - xy2
= (x + y)3 - 3xy(x + y) – xy(x + y)
= (x + y)3 - 4xy(x + y) = a3 - 4b2a
-
If x - 1 = 1 , then the value of { x4 - ( 1 / x2 ) } is x 3x2 + 5x - 3
-
View Hint View Answer Discuss in Forum
Expression = x4 - 1 x2 3x2 + 5x - 3
Dividing numerator and denominator by x,Expression = x3 - 1 x3 3x + 5 - 3 x Expression = x3 - 1 x3 3 x - 1 + 5 x Expression = x - 1 3 + 3 x - 1 x x 3 x - 1 + 5 x Expression = 1 + 3 = 4 = 1 3 + 5 8 2 Correct Option: B
Expression = x4 - 1 x2 3x2 + 5x - 3
Dividing numerator and denominator by x,Expression = x3 - 1 x3 3x + 5 - 3 x Expression = x3 - 1 x3 3 x - 1 + 5 x Expression = x - 1 3 + 3 x - 1 x x 3 x - 1 + 5 x Expression = 1 + 3 = 4 = 1 3 + 5 8 2
- If x + y = 15, then (x – 10)3 + (y – 5)3 is
-
View Hint View Answer Discuss in Forum
x + y = 15
⇒ (x – 10) + (y – 5) = 0
∴ (x – 10)3 + (y – 5)3 = (x – 10 + y – 5)3 – 3(x – 10)(y – 5)(x – 10 + y – 5) = 0
[∴ a3 + b3 = (a + b)3 – 3ab (a + b)]Correct Option: D
x + y = 15
⇒ (x – 10) + (y – 5) = 0
∴ (x – 10)3 + (y – 5)3 = (x – 10 + y – 5)3 – 3(x – 10)(y – 5)(x – 10 + y – 5) = 0
[∴ a3 + b3 = (a + b)3 – 3ab (a + b)]
-
If x2 + 1 = 66 , then the value of x2 - 1 + 2x = ? x2 x
-
View Hint View Answer Discuss in Forum
Using Rule 5
x2 + 1 = 66 x2 ⇒ x - 1 2 + 2 = 66 x ⇒ x - 1 2 = 66 - 2 = 64 x ⇒ x - 1 = ± 8 x ∴ Expression = x2 - 1 + 2x x Expression = x2 - 1 + 2 = x - 1 + 2 x x x Putting the value of x - 1 = 8 + 2 or – 8 + 2 = 10 or –6 x Correct Option: B
Using Rule 5
x2 + 1 = 66 x2 ⇒ x - 1 2 + 2 = 66 x ⇒ x - 1 2 = 66 - 2 = 64 x ⇒ x - 1 = ± 8 x ∴ Expression = x2 - 1 + 2x x Expression = x2 - 1 + 2 = x - 1 + 2 x x x Putting the value of x - 1 = 8 + 2 or – 8 + 2 = 10 or –6 x
- If a2 + a + 1 = 0, then the value of a9 is
-
View Hint View Answer Discuss in Forum
Using Rule 9,
a2 + a + 1 = 0
⇒ (a – 1) (a2 + a + 1) = 0
⇒ a3 – 1 = 0
⇒ a3 = 1 ⇒ a = 1
∴ a9 = 1Correct Option: C
Using Rule 9,
a2 + a + 1 = 0
⇒ (a – 1) (a2 + a + 1) = 0
⇒ a3 – 1 = 0
⇒ a3 = 1 ⇒ a = 1
∴ a9 = 1