Algebra


  1. If x + y = a and xy = b² , then the value of x³ – x²y - xy² + y³ in terms of a and b is :









  1. View Hint View Answer Discuss in Forum

    x3 - x2y - xy2 + y3 = x3 + y3 - x2y - xy2
    = (x + y)3 - 3xy(x + y) – xy(x + y)
    = (x + y)3 - 4xy(x + y) = a3 - 4b2a

    Correct Option: C

    x3 - x2y - xy2 + y3 = x3 + y3 - x2y - xy2
    = (x + y)3 - 3xy(x + y) – xy(x + y)
    = (x + y)3 - 4xy(x + y) = a3 - 4b2a


  1. If x -
    1
    = 1 , then the value of
    { x4 - ( 1 / x2 ) }
    is
    x3x2 + 5x - 3









  1. View Hint View Answer Discuss in Forum

    Expression =  x4 -
    1
    x2
    3x2 + 5x - 3

    Dividing numerator and denominator by x,


    Expression =     x3 -
    1
    x3
    3x + 5 -
    3
    x


    Expression = x3 -
    1
    x3
    3x -
    1
    + 5
    x

    Expression = x -
    1
    3 + 3x -
    1
    xx
    3x -
    1
    + 5
    x

    Expression =
    1 + 3
    =
    4
    =
    1
    3 + 582

    Correct Option: B

    Expression =  x4 -
    1
    x2
    3x2 + 5x - 3

    Dividing numerator and denominator by x,


    Expression =     x3 -
    1
    x3
    3x + 5 -
    3
    x


    Expression = x3 -
    1
    x3
    3x -
    1
    + 5
    x

    Expression = x -
    1
    3 + 3x -
    1
    xx
    3x -
    1
    + 5
    x

    Expression =
    1 + 3
    =
    4
    =
    1
    3 + 582



  1. If x + y = 15, then (x – 10)3 + (y – 5)3 is









  1. View Hint View Answer Discuss in Forum

    x + y = 15
    ⇒ (x – 10) + (y – 5) = 0
    ∴ (x – 10)3 + (y – 5)3 = (x – 10 + y – 5)3 – 3(x – 10)(y – 5)(x – 10 + y – 5) = 0
    [∴ a3 + b3 = (a + b)3 – 3ab (a + b)]

    Correct Option: D

    x + y = 15
    ⇒ (x – 10) + (y – 5) = 0
    ∴ (x – 10)3 + (y – 5)3 = (x – 10 + y – 5)3 – 3(x – 10)(y – 5)(x – 10 + y – 5) = 0
    [∴ a3 + b3 = (a + b)3 – 3ab (a + b)]


  1. If x2 +
    1
    = 66 , then the value of
    x2 - 1 + 2x
    = ?
    x2x










  1. View Hint View Answer Discuss in Forum

    Using Rule 5

    x2 +
    1
    = 66
    x2

    x -
    1
    2 + 2 = 66
    x

    x -
    1
    2 = 66 - 2 = 64
    x

    ⇒ x -
    1
    = ± 8
    x

    ∴ Expression =
    x2 - 1 + 2x
    x

    Expression =
    x2
    -
    1
    + 2 = x -
    1
    + 2
    xxx

    Putting the value of x -
    1
    = 8 + 2 or – 8 + 2 = 10 or –6
    x

    Correct Option: B

    Using Rule 5

    x2 +
    1
    = 66
    x2

    x -
    1
    2 + 2 = 66
    x

    x -
    1
    2 = 66 - 2 = 64
    x

    ⇒ x -
    1
    = ± 8
    x

    ∴ Expression =
    x2 - 1 + 2x
    x

    Expression =
    x2
    -
    1
    + 2 = x -
    1
    + 2
    xxx

    Putting the value of x -
    1
    = 8 + 2 or – 8 + 2 = 10 or –6
    x



  1. If a2 + a + 1 = 0, then the value of a9 is









  1. View Hint View Answer Discuss in Forum

    Using Rule 9,
    a2 + a + 1 = 0
    ⇒ (a – 1) (a2 + a + 1) = 0
    ⇒ a3 – 1 = 0
    ⇒ a3 = 1 ⇒ a = 1
    ∴ a9 = 1

    Correct Option: C

    Using Rule 9,
    a2 + a + 1 = 0
    ⇒ (a – 1) (a2 + a + 1) = 0
    ⇒ a3 – 1 = 0
    ⇒ a3 = 1 ⇒ a = 1
    ∴ a9 = 1